Skip to main content

Resonant Tunnelling and Superlattice Devices: Physics and Circuits

  • Chapter
Physics of Quantum Electron Devices

Part of the book series: Springer Series in Electronics and Photonics ((SSEP,volume 28))

Abstract

Resonant tunnelling (RT) through semiconductor double barriers (DB’s) was first demonstrated by Chang et al. [7.1] in 1974. With the development of modern crystal growth techniques, like molecular beam epitaxy (MBE), there has been renewed interest in the subject in recent years [7.2–23]. Material quality has improved to the point that negative differential resistance (NDR) can be observed at room temperature [7.2]. Intense research efforts are directed towards the optimization of the performances of the RT DB’s and their utilization as the building blocks of novel electronic and optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. L. Chang, L. Esaki, R. Tsu: “Resonant Tunnelling in Semiconductor Double Barriers”, Appl. Phys. Lett. 593, 24 (1974)

    Google Scholar 

  2. M. Tsuchiya, H. Sakaki, J. Yoshino: “ Room Temperature Observation of Differential Negative Resistance in an AlAs/GaAs/AlAs Resonant Tunnelling Diode”, Jpn. J. Appl. Phys., L-466, 24 (1985)

    Google Scholar 

  3. M. Tsuchiya, H. Sakaki: “Precise Control of Resonant Tunnelling Current in AlAs/GaAs/AlAs Double Barrier Diodes with Atomically-Controlled Barrier Widths”, Jpn. J. Appl. Phys., L185, 25 (1986)

    Google Scholar 

  4. M. Tsuchiya, H. Sakaki: “Dependence of Resonant Tunnelling Current on Well Widths in AlAs/GaAs/AlAs Double Barrier Diode Structures”, Appl. Phys. Lett. 88, 49 (1986)

    Google Scholar 

  5. S. Muto, T. Inata, H. Ohnishi, N. Yokoyama, S. Hiyamizu: “Effect of Silicon Doping Profile on I—V Characteristics of an AIGaAs/GaAs Resonant Tunnelling Barrier Structure Grown by MBE”, Jpn. J. Appl. Phys., L-577, 25 (1986)

    Google Scholar 

  6. H. Toyoshima, Y. Ando, A. Okamoto, T. Itoh: “New Resonant Tunnelling Diode with a Deep Quantum Well”, Jpn. J. Appl. Phys., L-786, 25 (1986)

    Google Scholar 

  7. M. A. Reed, R. J. Koestner, M. W. Goodwin: “Resonant Tunnelling Through HgTe/ Hg, Cdx Te Double Barrier, Single Quantum Well Heterostructure”, Appl. Phys. Lett., 1293, 49 (1986)

    Google Scholar 

  8. M. A. Reed, J. W. Lee: “Resonant Tunnelling in a GaAs/AIGaAs Barrier/InGaAs Quantum Well Heterostructure”, Appl. Phys. Lett., 845, 50 (1987)

    Google Scholar 

  9. S. Muto, T. Inata, Y. Sugiyama, Y. Nakata, T. Fujii, H. Ohnishi, S. Hiyamizu: “Quantum Well Width Dependence of Negative Differential Resistance of In0.52Al0.48 As/Ino.53Ga0.47 As Resonant Tunnelling Barriers Grown by MBE”, Jpn. J. Appl. Phys., L-220, 26 (1987)

    Google Scholar 

  10. M. Tsuchiya, H. Sakaki: “Dependence of Resonant Tunnelling Current on Al Mole Fractions in Al„Ga, xAs-GaAs-A1sGa, xAs Double Barrier Structures”, Appl. Phys. Lett., 1503, 50 (1987)

    Google Scholar 

  11. C. I. Huang, M. J. Paulus, C. A. Bozada, S. C. Dudley, K. R. Evans, C. E. Stutz, R. L. Jones, M. E. Cheney: “AIGaAs/GaAs Double Barrier Diodes with High Peak-to-Valley Current Ratio”, Appl. Phys. Lett., 121, 51 (1987)

    Article  Google Scholar 

  12. S. Sen, F. Capasso, A. L. Hutchinson, A. Y. Cho: “Room Temperature Operation of Gao.47Ino.53As/A10,48Ino.52As Resonant Tunnelling Diodes”, Electron. Lett., 1229, 23 (1987)

    Google Scholar 

  13. T. Inata, S. Muto, Y. Nakata, S. Sasa, T. Fujii, S. Hiyamizu: “A Pseudomorphic Ino.53Gao.47As/AIAs Resonant Tunnelling Barrier with a Peak-to-Valley Current Ratio of 14 at Room Temperature”, Jpn. J. Appl. Phys., L-1332, 26 (1987)

    Google Scholar 

  14. P. D. Hodson, D. J. Robbins, R. H. Wallis, J. I. Davies, A. C. Marshall: “Resonant Tunnelling in AlInAs/GaInAs Double Barrier Diodes Grown by MOCVD”, Electron. Létt., 187, 24 (1988)

    Google Scholar 

  15. E. E. Mendez, W. I. Wang, B. Ricco, L. Esaki: “Resonant Tunnelling of Holes in AlAs-GaAs AlAs Heterostructures”, Appl. Phys. Lett., 415, 47 (1985)

    Google Scholar 

  16. M. A. Reed, J. W. Lee, H.-L. Tsai: “Resonant Tunnelling through a Double GaAs/AlAs Superlattice Barrier, Single Quantum Well Heterosturcture”, Appl. Phys. Lett., 158, 49 (1986)

    Google Scholar 

  17. T. Nakagawa, H. Imamoto, T. Kojima, K. Ohta: “Observation of Resonant Tunnelling in AlGaAs/GaAs Triple Barrier Diodes”, Appl. Phys. Lett., 73 49 (1986)

    Google Scholar 

  18. T. Nakagawa, T. Fujita, Y. Matsumoto, T. Kojima, K. Ohta: “Resonant Tunnelling of Holes in AlAs/GaAs Triple Barrier Diodes”, Appl. Phys. Lett., 974, 50 (1987)

    Google Scholar 

  19. J. Allam, F. Beltram, F. Capasso, A. Y. Cho: “Resonant Zener Tunnelling of Electrons Between Valence-Band and Conduction-Band Quantum Wells”, Appl. Phys. Lett., 575, 51 (1987)

    Google Scholar 

  20. S. Sen, F. Capasso, A. C. Gossard, R. A. Spah, A. L. Hutchinson, S. N. G. Chu: “Observation of Resonant Tunnelling through a Compositionally Graded Parabolic Quantum Well”, Appl. Phys. Lett., 1428, 51 (1987)

    Google Scholar 

  21. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, D. D. Peck: “Resonant Tunnelling through Quantum Wells at Frequencies up to 2.5 THz.”, Appl. Phys. Lett., 588, 43 (1983)

    Google Scholar 

  22. T. C. L. G. Sollner, P. E. Tannenwald, D. D. Peck, W. D. Goodhue: “Quantum Well Oscillators”, Appl. Phys. Lett., 1319, 45 (1984)

    Google Scholar 

  23. E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue, C. L. Chen: “High-Speed Resonant-Tunnelling Diodes”, to be published in the SPIE Proc. (1988)

    Google Scholar 

  24. F. Capasso: “New High Speed Quantum Well and Variable Gap Superlattice Devices”, in Picosecond Electronics and Optoelectronics, G. A. Mourou, D. M. Bloom, C. H. Lee, Eds. Berlin: Springer, 112 (1985)

    Google Scholar 

  25. F. Capasso, R. A. Kiehl: “Resonant Tunnelling Transistor with Quantum Well Base and High-Energy Injection: A New Negative Differential Resistance Device”, J. Appl. Phys., 1366, 58 (1985)

    Google Scholar 

  26. N. Yokoyama, K. Imamura, S. Muto, S. Hiyamizu, H. Nishi: “A New Functional Resonant Tunnelling Hot Electron Transistor (RHET)”, Jpn. J. Appl. Phys., L-853, 24 (1985)

    Google Scholar 

  27. A. R. Bonnefoi, D. H. Chow, T. C. McGill: “Inverted Base-Collector Tunnel Transistors”, Appl. Phys. Lett., 888, 47 (1985)

    Google Scholar 

  28. A. R. Bonnefoi, T. C. McGill, R. D. Burnham: “Resonant Tunnelling Transistors with Controllable Negative Differential Resistance”, IEEE Electron Dev. Lett., 636, EDL-6 (1985)

    Google Scholar 

  29. S. Luryi, F. Capasso: “Resonant Tunnelling of Two Dimensional Electrons through a Quantum Wire: A Negative Transconductance Device”, Appl. Phys. Lett., 1347, 47 (1985); also Erratum, Appl. Phys. Lett., 1693, 48 (1986)

    Google Scholar 

  30. Y. Nakata, M. Asada, Y. Suematsu: “Novel Triode Device using Metal Insulator Superlattice Proposed for High Speed Response”, Electron. Lett., 58, 22 (1986)

    Google Scholar 

  31. F. Capasso, K. Mohammed, A. Y. Cho: “Resonant Tunnelling Through Double Barriers, Perpendicular Quantum Transport Phenomena in Superlattices, and their Device Applications”, IEEE J. Quant. Electron., 1853, QE-22 (1986)

    Google Scholar 

  32. F. Capasso, S. Sen, A. C. Gossard, A. L. Hutchinson, J. H. English: “Quantum Well Resonant Tunnelling Bipolar Transistor Operating at Room Temperature”, IEEE Electron Dev. Lett., 573, EDL-7 (1986)

    Google Scholar 

  33. T. Futatsugi, Y. Yamaguchi, K. Ishii, K. Imamura, S. Muto, N. Yokovama, A. Shibatomi: “A Resonant Tunnelling Bipolar Transistor (RBT): A New Functional Device with High Current Gain”, Jpn. J. Appl. Phys., L-131, 26 (1987)

    Google Scholar 

  34. F. Capasso, S. Sen, F. Beltram, A. Y. Cho: “Resonant Tunnelling Gate Field-Effect Transistor”, Electron. Lett., 225, 23 (1987)

    Google Scholar 

  35. T. K. Woodward, T. C. McGill, R. D. Burnham: “Experimental Realization of a Resonant Tunnelling Transistor”, Appl. Phys. Lett., 451, 50 (1987)

    Google Scholar 

  36. S. Sen, F. Capasso, F. Beltram, A. Y. Cho: “The Resonant Tunnelling Field-Effect Transistor: A New Negative Transconductance Device”, IEEE Trans. Electron Dev., 1768, ED-34 (1987)

    Google Scholar 

  37. F. Capasso, S. Sen, A. Y. Cho: “Negative Transconductance Resonant Tunnelling Field Effect Transistor”, Appl. Phys. Lett., 526, 51 (1987)

    Google Scholar 

  38. F. Capasso, S. Sen, A. Y. Cho: “Resonant Tunnelling: Physics, New Transistors and Superlattice Devices”, in Quantum Well and Superlattice Physics, 10, SPIE-792 (1987)

    Google Scholar 

  39. F. Capasso, S. Sen, A. Y. Cho: “Physics and New Device Applications of Resonant Tunnelling in Quantum Well Heterostructures”, Physica Scripta, 199, T19 (1987)

    Google Scholar 

  40. F. Beltram, F. Capasso, S. Luryi, S. N. G. Chu, A. Y. Cho: “Negative Transconductance Via Gating of the Quantum Well Subbands in a Resonant Tunnelling Transistor”, Appl. Phys. Lett., 219, 53 (1988)

    Google Scholar 

  41. G. H. Heilmeir: “Microelectronics: End of the Beginning or Beginning of the End?”, In IEEE International Electron Device Meeting Technical Digest, 2, IEDM-84, San Francisco, CA

    Google Scholar 

  42. S. Sen, F. Capasso, A. Y. Cho, D. Sivco: “Resonant Tunnelling Device with Multiple Negative Differential Resistance: Digital and Signal Processing Applications with Reduced Circuit Complexity”, IEEE Trans. Electron Dev., 2185, ED-34 (1987)

    Google Scholar 

  43. S. Luryi: “Frequency Limit of Double-Barrier Resonant-Tunnelling Oscillators”, Appl. Phys. Lett., 490, 47 (1985)

    Google Scholar 

  44. B. Ricco, M. Ya Azbel: “Physics of Resonant Tunnelling. The One Dimensional Double-Barrier Case”, Phys. Rev. B, 1970, 29 (1984)

    Google Scholar 

  45. T. Weil, B. Vinter: “Equivalence Between Resonant Tunnelling and Sequential Tunnelling in Double-Barrier Diodes”, Appl. Phys. Lett., 1281, 50 (1987)

    Google Scholar 

  46. M. Jonson, A. Grincwajg: “Effect of Inelastic Scattering on Resonant and Sequential Tunnelling in Double Barrier Heterostructures”, Appl. Phys. Lett., 1729, 51 (1987)

    Google Scholar 

  47. S. Luryi: “Coherent Versus Incoherent Resonant Tunnelling and Implications for Fast Devices”, to appear in Superlattices and Microstructures (1988)

    Google Scholar 

  48. K. K. Choi, B. F. Levine, C. G. Bethea, J. Walker, R. J. Malik: “Photoexcited Coherent Tunnelling in a Double-Barrier Superlattice”, Phys. Rev. Lett., 2459, 59 (1987)

    Google Scholar 

  49. A. D Stone, P. A. Lee: “Effect of Inelastic Processes on Resonant Tunnelling in One Dimension”, Phys. Rev. Lett., 1196, 54 (1985)

    Google Scholar 

  50. C. W. Tu, R. Hendel, R. Dingle: “Molecular Beam Epitaxy and the Technology of Selectively Doped Heterostructure Transistors”, in Gallium Arsenide Technology, D. K. Ferry Ed. Indianapolis, IN: Howard and Sams, 107 (1985)

    Google Scholar 

  51. F. Capasso, K. Mohammed, A. Y. Cho: “Sequential Resonant Tunnelling through a Multiquantum Well Superlattice”, Appl. Phys. Lett., 478, 48 (1986)

    Google Scholar 

  52. F. Capasso, K. Mohammed, A. Y. Cho, R. Hull, A. L. Hutchinson: “Effective Mass Filtering: Giant Quantum Amplification of the Photocurrent in a Semiconductor Superlattice”, Appl. Phys. Lett, 420, 47 (1985)

    Google Scholar 

  53. N. Yokoyama, K. Imamura, H. Ohnishi, T. Mori, S. Muto, A. Shibatomi: “Resonant Tunnelling Hot Electron Transistor (RHET)”, 5th Int. Conf. on Hot Carriers in Semiconductors, Boston, MA (20–24 July, 1987 )

    Google Scholar 

  54. A. C. Gossard, R. C. Miller, W. Wiegmann: “MBE Growth and Energy Levels of Quantum Wells with Special Shapes”, Surf. Sci., 131, 174 (1986)

    Google Scholar 

  55. Recent systematic studies in [7.10] have shown that electron RT through GaAs/Al„Ga1 „As diodes with thin barriers (30 A) is dominated by the barrier height at the I’ point also in the indirect gap region (0.45 x 1)

    Google Scholar 

  56. M. Heiblum, M. V. Fischetti, W. P. Dumke, D. J. Frank, I. M. Anderson, C. M. Knoedler, L. Osterling: “Electron Interference Effects in Quantum Wells: Observation of Bound and Resonant States”, Phys. Rev. Lett., 816, 58 (1987)

    Google Scholar 

  57. F. Capasso, S. Sen, A. Y. Cho, A. L. Hutchinson: “Hot Electron Resonant Tunnelling Through a Quantum Well: A New Electron Spectroscopy”, in Gallium Arsenide and Related Compounds 1986, 539 (1986)

    Google Scholar 

  58. F. Capasso, S. Sen, A. Y. Cho, A. L. Hutchinson: “Resonant Tunnelling Electron Spectroscopy”, Electron. Lett., 28, 23 (1987)

    Google Scholar 

  59. F. Capasso, S. Sen, A. Y. Cho, A. L. Hutchinson: “Resdnant Tunnelling Spectroscopy of Hot Minority Electrons Injected in Gallium Arsenide Quantum Wells”, Appl. Phys. Lett., 930, 50 (1987)

    Google Scholar 

  60. J. R. Hayes, A. F. J. Levi, W. Wiegmann: “Hot Electron Spectroscopy”, Electron. Lett., 851, 20 (1984)

    Google Scholar 

  61. N. Yokoyama, K. Imamura, T. Oshima, H. Nishi, S. Muto, K. Kondo, S. Hiyamizu: “Characterization of Double Heterojunction GaAs/A1GaAs Hot Electron Transistor” in IEEE International Electron Device Meeting Technical Digest, 532, IEDM-84, San Francisco, CA (Dec. 9–12, 1984 )

    Google Scholar 

  62. J. R. Hayes, A. F. J. Levi: “Dynamics of Extreme Nonequilibrium Electron Transport in GaAs”, IEEE J. of Quantum Electron., 1744, QE-22 (1986)

    Google Scholar 

  63. J. R. Hayes, A. F. J. Levi, A. C. Gossard, J. H. English: “Base Transport Dynamics in a Heterojunction Bipolar Transistor”, Appl. Phys. Lett., 1481, 49 (1986)

    Google Scholar 

  64. K. Berthold, A. F. J. Levi, J. Walker, R. J. Malik: “Extreme Nonequilibrium Transport in Heterojunction Bipolar Transistors”, Appl. Phys. Lett., 2247, 52 (1988)

    Google Scholar 

  65. F. Capasso, S. Sen, A. Y. Cho, D. Sivco: “Resonant Tunnelling Devices with Multiple Negative Differential Resistance and Demonstration of a Three-State Memory Cell for Multiple-Valued Logic Applications”, IEEE Electron Dev. Lett., 297, EDL-8 (1987)

    Google Scholar 

  66. R. C. Potter, A. A. Lakhani, D. Beyea, H. Hier, E. Hempfling A. Fathimulla: “Three-Dimensional Integration of Resonant Tunnelling Structures for Signal Processing and Three-State Logic”, Appl. Phys. Lett., 2163, 52 (1988)

    Google Scholar 

  67. A. A. Lakhani, R. C. Potter, H. S. Hier: “Eleven-Bit Parity Generator with a Single, Vertically Integrated Resonant Tunnelling Device”, Electron. Lett., 681, 24 (1988)

    Google Scholar 

  68. S. Sen, F. Capasso, D. Sivco, A. Y. Cho: “New Resonant Tunnelling Devices with Multiple Negative Resistance Regions and High Room Temperature Peak to Valley Ratio”, IEEE Electron Dev. Lett., 402, 9 (1988)

    Google Scholar 

  69. S. Luryi, A. Kastalsky, A. C. Gossard, R. H. Hendel: “Charge Injection Transistor Based on Real-Space Hot-Electron Transfer”, IEEE Trans. Electron Dev., 832, ED-31 (1984)

    Google Scholar 

  70. C. Rine, Ed.: Computer Science and Multiple Valued Logic. Amsterdam: North-Holland (1977)

    Google Scholar 

  71. A. Heung, H. T. Mouftah: “An All-CMOS Ternary Identity Cell for VLSI Implementation”, Electron. Lett., 221, 20 (1984)

    Google Scholar 

  72. General Electric Tunnel Diode Manual, First Ed., 66 (1961)

    Google Scholar 

  73. J. Söderström, T. G. Andersson: “A Multiple-State Memory Cell Based on the Resonant Tunnelling Diode”, to be published in IEEE Electron Dev. Lett., (May, 1988 )

    Google Scholar 

  74. K. K. Choi, B. F. Levine, R. J. Malik, J. Walker, C. G. Bethea: “Periodic Negative Conductance by Sequential Resonant Tunnelling Through an Expanding High-Field Superlattice Domain”, Phys. Rev. B, 4172, 35 (1987)

    Google Scholar 

  75. S. P. Gentile: Basic Theory and Application of Tunnel Diodes, Princeton: Van Nostrand, 156 (1962)

    Google Scholar 

  76. A. S. Vengurlekar, F. Capasso, S. Sen, A. L. Hutchinson, S. N. G. Chu, D. Sivco, A. Y. Cho: “Quasiballistic Resonant Tunneling of Minority Electrons into the Excited States of a Quantum Well”, Appl. Phys. Lett., 2529, 55 (1989)

    Google Scholar 

  77. F. Capasso, A. S. Vengurlekar, A. Hutchinson, W. T. Tsang: “Negative Transconductance Superlattice Base Bipolar Transistor”, Electron. Lett. 1117, 25 (1989)

    Google Scholar 

  78. F. Beltram, F. Capasso, A. L. Hutchinson, R. J. Malik: “Continuum Mini-band Superlattice Base Transistor with Graded Gap Electron Inject”, Electron. Lett. 1219, 25 (1989)

    Google Scholar 

  79. R. J. Malik, F. Capasso, R. A. Stall, R. A. Kiehl, R. W. Ryan, R. Wunder, C. G. Bethea: High Gain, High Frequency AlGaAs/GaAs Graded Band-Gap Base Bipolar Transistors with a Be Diffusion Setback Layer in the Base“, Appl. Phys. Lett., 600, 46 (1985)

    Google Scholar 

  80. D. Ankri, R. A. Zoulay, E. Caquot, J. Dangal, C. Dubon, J. Palmier: “Analysis of D. C. Characteristics of GaAlAs/GaAs Double Heterojunction Bipolar Transistors”, Solid-State Electron., 141, 29 (1986)

    Google Scholar 

  81. T. Futatsugi, Y. Yamaguchi, S. Muto, N. Yokoyama, A. Shibatomi: “InAlAs/InGaAs Resonant Tunnelling Bipolar Transistor (RBTs) Operating at Room Temperature with High Current Gains”, IEEE International Electron Device Meeting Technical Digest, 877, IEDM-87, Washington, DC (Dec. 6–9, 1987 )

    Google Scholar 

  82. S. Sen, F. Capasso, A. Y. Cho, D. L. Sivco: “Stacked Double Barriers and their Application in Novel Multi-State Resonant Tunnelling Bipolar Transistor”, Inst. Phys. Conf. Ser. 605, 96 (1988)

    Google Scholar 

  83. S. Sen, F. Capasso, A. Y. Cho, D. L. Sivco: “Multiple State Resonant Tunnelling Bipolar Transistor Operating at Room Temperature and its Application as a Frequency Multiplier”, IEEE Electron Dev. Lett., 533, 9 (1988)

    Google Scholar 

  84. F. Capasso, S. Sen, A. Y. Cho, D. L. Sivco: “Multiple Negative Transconductance and Differential Conductance in a Bipolar Transistor by Sequential Quenching of Resonant Tunnelling”, Appl. Phys. Lett., 1056, 53 (1988)

    Google Scholar 

  85. S. R. Forrest, M. DiDomenico, Jr, R. G. Smith, H. J. Stocker: “Evidence for Tunnelling in Reverse-Biased III—V Photodetector Diodes”, Appl. Phys. Lett. 580, 36 (1980)

    Google Scholar 

  86. S. Sen, F. Capasso, A. Y. Cho, D. L. Sivco: “Parity Generator Circuit Using a Multi-State Resonant Tunnelling Bipolar Transistor”, Electron. Lett., 1506, 24 (1988)

    Google Scholar 

  87. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus: “Band-Edge Electroabsorption in Quantum Well Structures”, Phys. Rev. Lett., 2173, 53 (1984)

    Google Scholar 

  88. S. Luryi: “Quantum Capacitance Devices”, Appl. Phys. Lett., 501, 52 (1988)

    Google Scholar 

  89. T. K. Woodward, T. C. McGill, H. F. Chung, R. D. Burnham: “Integration of a Resonant-Tunnelling Structure with a Metal-Semiconductor Field-Effect Transistor”, Appl. Phys. Lett., 1542, 51 (1987)

    Google Scholar 

  90. T. K. Woodward, T. C. McGill, H. F. Chung, R. D. Burnham: “Applications of Resonant-Tunnelling Field-Effect Transistors”, IEEE Electron Dev. Lett., 122, EDL-9 (1988)

    Google Scholar 

  91. V. J. Goldman, D. C. Tsui, J. E. Cunningham: “Resonant Tunnelling in a Magnetic Field: Evidence for Space-Charge Build-Up”, Phys. Rev., 9387, B 35 (1987)

    Google Scholar 

  92. H. Sakaki: “Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire Structures”, Jpn. J. Appl. Phys., L-735, 19 (1980)

    Google Scholar 

  93. Yia-Chung Chang, L. L. Chang, L. Esaki: “A New One-Dimensional Quantum Well Structure”, Appl. Phys. Lett., 1324, 47 (1985)

    Google Scholar 

  94. P. M. Petroff, A. C. Gossard, R. A. Logan, W. Wiegmann: “Toward Quantum Well Wires: Fabrication and Optical Properties”, Appl. Phys. Lett., 636, 41 (1982)

    Google Scholar 

  95. J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, J. H. English: “Optically Detected Carrier Confinement to One and Zero Dimensions in GaAs Quantum Well Wires and Boxes”, Appl. Phys. Lett., 1275, 49 (1986)

    Google Scholar 

  96. M. A. Reed, R. T. Bate, K. Bradshaw, W. M. Duncan, W. R. Frensley, J. W. Lee, H. D. Shih: “Spatial Quantization in GaAs-AIGaAs Multiple Quantum Dots”, J. Vac. Sci. Technol., 358, B 4 (1986)

    Google Scholar 

  97. F. Stern, W. E. Howard: Phys. Rev. 163, 816 (1967)

    Article  CAS  Google Scholar 

  98. It should be noted that while the exposed portion of the channel is depleted, the portion under the emitter is not. This follows unambiguously from the identification of the current peaks with resonant tunnelling. At the bias conditions corresponding to the resonances in the range Vo 0, the field drop associated with charge in the quantum well is always 2 x 105 V/cm corresponding to n Z, 2 x 1012 cm-2.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capasso, F., Sen, S., Beltram, F., Cho, A.Y. (1990). Resonant Tunnelling and Superlattice Devices: Physics and Circuits. In: Capasso, F. (eds) Physics of Quantum Electron Devices. Springer Series in Electronics and Photonics, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74751-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74751-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74753-3

  • Online ISBN: 978-3-642-74751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics