Skip to main content

Microwave and Millimeter-Wave Resonant-Tunnelling Devices

  • Chapter

Part of the book series: Springer Series in Electronics and Photonics ((SSEP,volume 28))

Abstract

The concept of particles interacting coherently with finite multiple-barrier structures is over 35 years old, and yet it forms the basis for an area of intense activity today, both for practical devices and for studies of the underlying physics. An example is the two barrier structure shown in Fig. 6.1. In the quantum theory textbook written by Bohm [6.1] in 1951, the double-barrier problem was solved in the WKB approximation. He showed that, at certain energies, unity transmission resonances (resonant tunnelling) occur for particles incident upon the structure. Ten years elapsed before it was recognized that this phenomenon could be useful for devices. The first suggestion for a resonant-tunnelling transistor was made by Davis and Hosack [6.2] and Ioganson [6.3] in 1963, following the suggestion by Mead [6.4] in 1960 of a nonresonant double-barrier transistor. Early in the next decade Esaki and Tsu [6.5] pointed out that superlattices should show negative resistance, and Kazarinov and Suris [6.6] showed that negative resistance could arise from a finite superlattice. In 1973 Tsu and Esaki [6.7] derived the two-terminal current-voltage (IV)curves for finite multiple-barrier structures using a wave function matching formulation based on a method of Kane [6.8]. This technique has been remarkably successful at explaining experimental results, as will be discussed in Sect. 6.7. In 1974 Chang et al. [6.9] were the first to observe resonant tunnelling in a mono-crystalline semiconductor. They used a two-barrier structure and observed the resonances in the current by measuring the I—V curve. A decade later, interest in the field was renewed when Sollner et al. [6.10] showed that the intrinsic charge transport mechanism of a two-barrier diode could respond to voltage changes in times of the order of 0.1 ps. More recently, the negative differential resistance characteristic of resonant tunnelling has been obtained at room temperature [6.11–13]. At present, several laboratories are actively investigating resonant-tunnelling devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bohm: Quantum Theory ( Prentice-Hall, Engelwood Cliffs, N.J. 1951 ) p. 283

    Google Scholar 

  2. R. H. Davis, H. H. Hosack: J. Appl. Phys. 34, 864 (1963)

    Article  Google Scholar 

  3. L. V. Ioganson: Zh. Eksp. Teor. Fiz. 45, 207 (1963)

    Google Scholar 

  4. L. V. Ioganson: English transi. Soy. Phys.-JETP 18, 146, (1964)

    Google Scholar 

  5. C. A. Mead: J. Appl. Phys. 32, 646 (1961)

    Article  Google Scholar 

  6. L. Esaki, R. Tsu: IBM J. Res. Develop. 14, 61 (1970)

    Article  CAS  Google Scholar 

  7. R. F. Kazarinov, R. A. Suris: Soy. Phys. Semicond. 5, 707 (1971)

    Google Scholar 

  8. R. Tsu, L. Esaki: Appl. Phys. Lett. 22, 562 (1973)

    Article  CAS  Google Scholar 

  9. E. O. Kane: “Basic Concepts of Tunnelling,” in Tunnelling Phenomena in Solids, ed. E. Burstein, S. Lundqvist ( Plenum, New York 1969 )

    Google Scholar 

  10. L. L. Chang, L. Esaki, R. Tsu: Appl. Phys. Lett. 24, 593 (1974)

    Article  CAS  Google Scholar 

  11. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, D. D. Peck: Appl. Phys. Lett. 43, 588 (1983)

    Article  CAS  Google Scholar 

  12. M. Tsuchiya, H. Sakaki: IEEE Int. Electron Devices Meeting, Washington DC, 1985 p. 662 6.12 T. J. Shewchuck, P. C. Chaplin, P. D. Coleman, W. Kopp, R. Fischer, H. Morkoc: Appl. Phys. Lett. 46, 508 (1985)

    Google Scholar 

  13. W. D. Goodhue, T. C. L. G. Sollner, H. Q. Le, E. R. Brown, B. A. Vojak: Appl. Phys. Lett. 49, 1086 (1986)

    Article  CAS  Google Scholar 

  14. S. Muto, T. Inata, Y. Nataka, S. Hiyamizu: Int. Workshop on Future Electron Devices Superlattice Devices, Tokyo, Japan, Feb. 9–11, 1987, p. 33

    Google Scholar 

  15. A. R. Bonnefoi, R. T. Collins, T. C. Collins, T. C. McGill, R. D. Burnham, F. A. Ponce: Appl. Phys. Lett. 46, 285 (1985)

    Article  CAS  Google Scholar 

  16. S. Ray, P. Ruden, V. Sokolov, R. Kolbas, T. Boonstra, J. Williams: Appl. Phys. Lett. 48, 1666 (1986)

    Article  CAS  Google Scholar 

  17. S. Luryi: Appl. Phys. Lett. 47, 490 (1985)

    Article  CAS  Google Scholar 

  18. J. Blatt, V. F. Weisskopf: Theoretical Nuclear Physics (Springer, Berlin, Heidelberg 1979 )

    Google Scholar 

  19. T. C. L. G. Sollner, E. R. Brown, W. D. Goodhue, H. Q. Le: Appl. Phys. Lett. 50, 332 (1987)

    Article  CAS  Google Scholar 

  20. H. C. Torrey, C. A. Whitmer: Crystal Rectifiers, New York, 1948, p. 336

    Google Scholar 

  21. H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerald, N. R. Erickson: Appl. Phys. Lett. 33, 151 (1978)

    Article  Google Scholar 

  22. P. D. Coleman, S. Goedeke, T. J. Shewchuk, P. C. Chapin, J. M. Gering, H. Morkoc: Appl. Phys. Lett. 48, 422 (1986)

    Article  Google Scholar 

  23. E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue, C. D. Parker: Appl. Phys. Lett. 50, 83 (1987)

    Article  CAS  Google Scholar 

  24. K. Kurokawa: Bell Syst. Tech. J. 48, 1937 (1969)

    Google Scholar 

  25. C. S. Kim, A. Brandli: IRE Trans. Circuit Theory CT8, 416 (1961)

    Google Scholar 

  26. R. F. Trambarulo: International Solid-State Circuits Conference, Philadelphia, PA, 1961

    Google Scholar 

  27. E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue, C. D. Parker: Device Research Conference, Santa Barbara, CA, June 1987. Paper IVA-2

    Google Scholar 

  28. P. E. Davis, G. Gibbons: Solid State Electron. 10, 461 (1967)

    Article  CAS  Google Scholar 

  29. D. T. Young, C. A. Burrus, R. C. Shaw: Proc. IEEE 52, 1260 (1964)

    Article  Google Scholar 

  30. C. A. Burrus: J. Appl. Phys. 32, 1031 (1961)

    Article  CAS  Google Scholar 

  31. D. Carlson, M. V. Schneider: IEEE Trans. Microwave Theory Tech. MTT-26, 706 (1978)

    Google Scholar 

  32. C. S. Kim: IRE Trans. Electron Dev. ED-8, 394 (1961)

    Google Scholar 

  33. A. R. Kerr: IEEE Trans. Microwave Theory Tech. MTT-23, 828 (1975)

    Google Scholar 

  34. E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue: Solid Research Report, MIT Lincoln Laboratory 1986: 1, 37 (1986)

    Google Scholar 

  35. C. H. Page: Proc. IRE 46, 1738 (1958)

    Article  Google Scholar 

  36. T. C. L. G. Sollner, E. R. Brown, W. D. Goodhue: Optical Soc. Am. Topical Meeting on Picosecond Electronics and Optoelectronics, Incline Village, NV, Jan 14–16, 1987, p. 143

    Google Scholar 

  37. T. L. Banis, I. V. Parshelyunas, Yu. K. Pozhela: Litov. Fiz. Sb. 11, 1013 (1971)

    Google Scholar 

  38. J. Pozhela: Plasma and Current Instabilities in Semiconductors, Intern. Ser. Sci. Solid State, 18 ( Pergamon, Oxford 1981 )

    Google Scholar 

  39. T. C. L. G. Sollner, H. Q. Le, C. A. Correa, W. D. Goodhue: Appl. Phys. Lett. 47, 36 (1985)

    Article  CAS  Google Scholar 

  40. R. J. Nelson: Appl. Phys. Lett. 31, 351 (1977)

    Article  CAS  Google Scholar 

  41. D. V. Lang, R. A. Logan, M. Jaros: Phys. Rev. B, 1015 (1979)

    Google Scholar 

  42. D. V. Lang, R. A. Logan: Inst. Phys. Conf. Ser. 43, 433 (1979)

    Google Scholar 

  43. B. Jogai, K. L. Wang: Appl. Phys. Lett. 46, 167 (1985)

    Article  CAS  Google Scholar 

  44. A. R. Bonnefoi, D. H. Chow, T. C. McGill: Appl. Phys. Lett. 47, 888 (1985)

    Article  CAS  Google Scholar 

  45. N. Yokoyama, K. Imamura, S. Muto, S. Hiyamizu, H. Nishii: Jpn. J. Appl. Phys. 24, L583 (1985)

    Article  Google Scholar 

  46. F. Capasso, R. A. Kiehl: J. Appl. Phys. 58, 1366 (1985)

    Article  CAS  Google Scholar 

  47. T. C. L. G. Sollner, H. Q. Le, C. A. Correa, W. D. Goodhue: IEEE/Cornell Conf. Advanced Concepts in High Speed Semicond. Devices and Circuits, Ithaca, NY, 1985, p. 252

    Google Scholar 

  48. W. Frensley: IEEE Int. Electron Devices Meeting, Washington, DC, 1986. Paper 25. 5

    Google Scholar 

  49. W. Frensley: Phys. Rev. B 36, 1570 (1987)

    Article  Google Scholar 

  50. A. C. Gossard: Inst. Phys. Conf. Ser. 69, 1 (1984)

    CAS  Google Scholar 

  51. H. Q. Le, T. C. L. G. Sollner: unpublished

    Google Scholar 

  52. H. L. Berkowitz, R. A. Lux: Proc. Phys. Chem. Semicond. Interfaces XIV, Salt Lake City, UT (Jan. 1987). To be published in J. Vac. Sci. Technol.

    Google Scholar 

  53. S. Wingreen, J. W. Wilkins: Bull. Am. Phys. Soc. 32, 833 (1987)

    Google Scholar 

  54. V. J. Goldman, D. C. Tsui, J. E. Cunningham: Phys. Rev. Lett. 58, 1256 (1987)

    Article  CAS  Google Scholar 

  55. T. C. L. G. Sollner: Phys. Rev. Lett. 59, 1622 (1987)

    Article  CAS  Google Scholar 

  56. D. D. Coon, H. C. Liu: Appl. Phys. Lett. 47, 172 (1985)

    Article  CAS  Google Scholar 

  57. B. Ricco, M. Ya. Azbel: Phys. Rev. B 29, 1970 (1984)

    Article  CAS  Google Scholar 

  58. D. D. Coon, H. C. Liu: Appl. Phys. Lett. 49, 94 (1986)

    Article  Google Scholar 

  59. L. V. Ioganson: Usp. Fiz. Nauk 86, 175 (1965)

    Google Scholar 

  60. L. V. Ioganson: Soy. Phys-Usp. 8, 413 (1965)

    Article  Google Scholar 

  61. T. Weil, B. Vinter: Appl. Phys. Lett. 50, 1281 (1987)

    Article  CAS  Google Scholar 

  62. F. Capasso: Surface. Sci. 142, 513 (1984)

    Article  CAS  Google Scholar 

  63. T. Nakagawa, N. J. Kawai, K. Ohta: Superlattices and Microstructures 1, 187 (1985)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sollner, T.C.L.G., Brown, E.R., Goodhue, W.D., Le, H.Q. (1990). Microwave and Millimeter-Wave Resonant-Tunnelling Devices. In: Capasso, F. (eds) Physics of Quantum Electron Devices. Springer Series in Electronics and Photonics, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74751-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74751-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74753-3

  • Online ISBN: 978-3-642-74751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics