Advertisement

Microwave and Millimeter-Wave Resonant-Tunnelling Devices

  • T. C. L. G. Sollner
  • E. R. Brown
  • W. D. Goodhue
  • H. Q. Le
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 28)

Abstract

The concept of particles interacting coherently with finite multiple-barrier structures is over 35 years old, and yet it forms the basis for an area of intense activity today, both for practical devices and for studies of the underlying physics. An example is the two barrier structure shown in Fig. 6.1. In the quantum theory textbook written by Bohm [6.1] in 1951, the double-barrier problem was solved in the WKB approximation. He showed that, at certain energies, unity transmission resonances (resonant tunnelling) occur for particles incident upon the structure. Ten years elapsed before it was recognized that this phenomenon could be useful for devices. The first suggestion for a resonant-tunnelling transistor was made by Davis and Hosack [6.2] and Ioganson [6.3] in 1963, following the suggestion by Mead [6.4] in 1960 of a nonresonant double-barrier transistor. Early in the next decade Esaki and Tsu [6.5] pointed out that superlattices should show negative resistance, and Kazarinov and Suris [6.6] showed that negative resistance could arise from a finite superlattice. In 1973 Tsu and Esaki [6.7] derived the two-terminal current-voltage (IV)curves for finite multiple-barrier structures using a wave function matching formulation based on a method of Kane [6.8]. This technique has been remarkably successful at explaining experimental results, as will be discussed in Sect. 6.7. In 1974 Chang et al. [6.9] were the first to observe resonant tunnelling in a mono-crystalline semiconductor. They used a two-barrier structure and observed the resonances in the current by measuring the I—V curve. A decade later, interest in the field was renewed when Sollner et al. [6.10] showed that the intrinsic charge transport mechanism of a two-barrier diode could respond to voltage changes in times of the order of 0.1 ps. More recently, the negative differential resistance characteristic of resonant tunnelling has been obtained at room temperature [6.11–13]. At present, several laboratories are actively investigating resonant-tunnelling devices.

Keywords

Resonant Tunnelling Negative Differential Resistance Tunnel Diode Negative Resistance Dynamic Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    D. Bohm: Quantum Theory ( Prentice-Hall, Engelwood Cliffs, N.J. 1951 ) p. 283Google Scholar
  2. 6.2
    R. H. Davis, H. H. Hosack: J. Appl. Phys. 34, 864 (1963)CrossRefGoogle Scholar
  3. 6.3
    L. V. Ioganson: Zh. Eksp. Teor. Fiz. 45, 207 (1963)Google Scholar
  4. L. V. Ioganson: English transi. Soy. Phys.-JETP 18, 146, (1964)Google Scholar
  5. 6.4
    C. A. Mead: J. Appl. Phys. 32, 646 (1961)CrossRefGoogle Scholar
  6. 6.5
    L. Esaki, R. Tsu: IBM J. Res. Develop. 14, 61 (1970)CrossRefGoogle Scholar
  7. 6.6
    R. F. Kazarinov, R. A. Suris: Soy. Phys. Semicond. 5, 707 (1971)Google Scholar
  8. 6.7
    R. Tsu, L. Esaki: Appl. Phys. Lett. 22, 562 (1973)CrossRefGoogle Scholar
  9. 6.8
    E. O. Kane: “Basic Concepts of Tunnelling,” in Tunnelling Phenomena in Solids, ed. E. Burstein, S. Lundqvist ( Plenum, New York 1969 )Google Scholar
  10. 6.9
    L. L. Chang, L. Esaki, R. Tsu: Appl. Phys. Lett. 24, 593 (1974)CrossRefGoogle Scholar
  11. 6.10
    T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, D. D. Peck: Appl. Phys. Lett. 43, 588 (1983)CrossRefGoogle Scholar
  12. 6.11
    M. Tsuchiya, H. Sakaki: IEEE Int. Electron Devices Meeting, Washington DC, 1985 p. 662 6.12 T. J. Shewchuck, P. C. Chaplin, P. D. Coleman, W. Kopp, R. Fischer, H. Morkoc: Appl. Phys. Lett. 46, 508 (1985)Google Scholar
  13. 6.13
    W. D. Goodhue, T. C. L. G. Sollner, H. Q. Le, E. R. Brown, B. A. Vojak: Appl. Phys. Lett. 49, 1086 (1986)CrossRefGoogle Scholar
  14. 6.14
    S. Muto, T. Inata, Y. Nataka, S. Hiyamizu: Int. Workshop on Future Electron Devices Superlattice Devices, Tokyo, Japan, Feb. 9–11, 1987, p. 33Google Scholar
  15. 6.15
    A. R. Bonnefoi, R. T. Collins, T. C. Collins, T. C. McGill, R. D. Burnham, F. A. Ponce: Appl. Phys. Lett. 46, 285 (1985)CrossRefGoogle Scholar
  16. 6.16
    S. Ray, P. Ruden, V. Sokolov, R. Kolbas, T. Boonstra, J. Williams: Appl. Phys. Lett. 48, 1666 (1986)CrossRefGoogle Scholar
  17. 6.17
    S. Luryi: Appl. Phys. Lett. 47, 490 (1985)CrossRefGoogle Scholar
  18. 6.18
    J. Blatt, V. F. Weisskopf: Theoretical Nuclear Physics (Springer, Berlin, Heidelberg 1979 )Google Scholar
  19. 6.19
    T. C. L. G. Sollner, E. R. Brown, W. D. Goodhue, H. Q. Le: Appl. Phys. Lett. 50, 332 (1987)CrossRefGoogle Scholar
  20. 6.20
    H. C. Torrey, C. A. Whitmer: Crystal Rectifiers, New York, 1948, p. 336Google Scholar
  21. 6.21
    H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerald, N. R. Erickson: Appl. Phys. Lett. 33, 151 (1978)CrossRefGoogle Scholar
  22. 6.22
    P. D. Coleman, S. Goedeke, T. J. Shewchuk, P. C. Chapin, J. M. Gering, H. Morkoc: Appl. Phys. Lett. 48, 422 (1986)CrossRefGoogle Scholar
  23. 6.23
    E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue, C. D. Parker: Appl. Phys. Lett. 50, 83 (1987)CrossRefGoogle Scholar
  24. 6.24
    K. Kurokawa: Bell Syst. Tech. J. 48, 1937 (1969)Google Scholar
  25. 6.25
    C. S. Kim, A. Brandli: IRE Trans. Circuit Theory CT8, 416 (1961)Google Scholar
  26. 6.26
    R. F. Trambarulo: International Solid-State Circuits Conference, Philadelphia, PA, 1961Google Scholar
  27. 6.27
    E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue, C. D. Parker: Device Research Conference, Santa Barbara, CA, June 1987. Paper IVA-2Google Scholar
  28. 6.28
    P. E. Davis, G. Gibbons: Solid State Electron. 10, 461 (1967)CrossRefGoogle Scholar
  29. 6.29
    D. T. Young, C. A. Burrus, R. C. Shaw: Proc. IEEE 52, 1260 (1964)CrossRefGoogle Scholar
  30. 6.30
    C. A. Burrus: J. Appl. Phys. 32, 1031 (1961)CrossRefGoogle Scholar
  31. 6.31
    D. Carlson, M. V. Schneider: IEEE Trans. Microwave Theory Tech. MTT-26, 706 (1978)Google Scholar
  32. 6.32
    C. S. Kim: IRE Trans. Electron Dev. ED-8, 394 (1961)Google Scholar
  33. 6.33
    A. R. Kerr: IEEE Trans. Microwave Theory Tech. MTT-23, 828 (1975)Google Scholar
  34. 6.34
    E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue: Solid Research Report, MIT Lincoln Laboratory 1986: 1, 37 (1986)Google Scholar
  35. 6.35
    C. H. Page: Proc. IRE 46, 1738 (1958)CrossRefGoogle Scholar
  36. 6.36
    T. C. L. G. Sollner, E. R. Brown, W. D. Goodhue: Optical Soc. Am. Topical Meeting on Picosecond Electronics and Optoelectronics, Incline Village, NV, Jan 14–16, 1987, p. 143Google Scholar
  37. 6.37
    T. L. Banis, I. V. Parshelyunas, Yu. K. Pozhela: Litov. Fiz. Sb. 11, 1013 (1971)Google Scholar
  38. 6.38
    J. Pozhela: Plasma and Current Instabilities in Semiconductors, Intern. Ser. Sci. Solid State, 18 ( Pergamon, Oxford 1981 )Google Scholar
  39. 6.39
    T. C. L. G. Sollner, H. Q. Le, C. A. Correa, W. D. Goodhue: Appl. Phys. Lett. 47, 36 (1985)CrossRefGoogle Scholar
  40. 6.40
    R. J. Nelson: Appl. Phys. Lett. 31, 351 (1977)CrossRefGoogle Scholar
  41. 6.41
    D. V. Lang, R. A. Logan, M. Jaros: Phys. Rev. B, 1015 (1979)Google Scholar
  42. 6.42
    D. V. Lang, R. A. Logan: Inst. Phys. Conf. Ser. 43, 433 (1979)Google Scholar
  43. 6.43
    B. Jogai, K. L. Wang: Appl. Phys. Lett. 46, 167 (1985)CrossRefGoogle Scholar
  44. 6.44
    A. R. Bonnefoi, D. H. Chow, T. C. McGill: Appl. Phys. Lett. 47, 888 (1985)CrossRefGoogle Scholar
  45. 6.45
    N. Yokoyama, K. Imamura, S. Muto, S. Hiyamizu, H. Nishii: Jpn. J. Appl. Phys. 24, L583 (1985)CrossRefGoogle Scholar
  46. 6.46
    F. Capasso, R. A. Kiehl: J. Appl. Phys. 58, 1366 (1985)CrossRefGoogle Scholar
  47. 6.47
    T. C. L. G. Sollner, H. Q. Le, C. A. Correa, W. D. Goodhue: IEEE/Cornell Conf. Advanced Concepts in High Speed Semicond. Devices and Circuits, Ithaca, NY, 1985, p. 252Google Scholar
  48. 6.48
    W. Frensley: IEEE Int. Electron Devices Meeting, Washington, DC, 1986. Paper 25. 5Google Scholar
  49. 6.49
    W. Frensley: Phys. Rev. B 36, 1570 (1987)CrossRefGoogle Scholar
  50. 6.50
    A. C. Gossard: Inst. Phys. Conf. Ser. 69, 1 (1984)Google Scholar
  51. 6.
    H. Q. Le, T. C. L. G. Sollner: unpublishedGoogle Scholar
  52. 6.52
    H. L. Berkowitz, R. A. Lux: Proc. Phys. Chem. Semicond. Interfaces XIV, Salt Lake City, UT (Jan. 1987). To be published in J. Vac. Sci. Technol.Google Scholar
  53. 6.53
    S. Wingreen, J. W. Wilkins: Bull. Am. Phys. Soc. 32, 833 (1987)Google Scholar
  54. 6.54
    V. J. Goldman, D. C. Tsui, J. E. Cunningham: Phys. Rev. Lett. 58, 1256 (1987)CrossRefGoogle Scholar
  55. 6.55
    T. C. L. G. Sollner: Phys. Rev. Lett. 59, 1622 (1987)CrossRefGoogle Scholar
  56. 6.56
    D. D. Coon, H. C. Liu: Appl. Phys. Lett. 47, 172 (1985)CrossRefGoogle Scholar
  57. 6.57
    B. Ricco, M. Ya. Azbel: Phys. Rev. B 29, 1970 (1984)CrossRefGoogle Scholar
  58. 6.58
    D. D. Coon, H. C. Liu: Appl. Phys. Lett. 49, 94 (1986)CrossRefGoogle Scholar
  59. 6.59
    L. V. Ioganson: Usp. Fiz. Nauk 86, 175 (1965)Google Scholar
  60. L. V. Ioganson: Soy. Phys-Usp. 8, 413 (1965)CrossRefGoogle Scholar
  61. 6.60
    T. Weil, B. Vinter: Appl. Phys. Lett. 50, 1281 (1987)CrossRefGoogle Scholar
  62. 6.61
    F. Capasso: Surface. Sci. 142, 513 (1984)CrossRefGoogle Scholar
  63. 6.62
    T. Nakagawa, N. J. Kawai, K. Ohta: Superlattices and Microstructures 1, 187 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • T. C. L. G. Sollner
  • E. R. Brown
  • W. D. Goodhue
  • H. Q. Le

There are no affiliations available

Personalised recommendations