Skip to main content

Carrier Confinement to One and Zero Degrees of Freedom.

Quantum Wires and Quantum Boxes in Gallium Arsenide: Optical and Structural Properties

  • Chapter

Part of the book series: Springer Series in Electronics and Photonics ((SSEP,volume 28))

Abstract

Since the early 1970s when the basic ideas on quantum wells [11.1, 2] were introduced, much progress has been realized in this field. The main catalysts for this development have been the advent of molecular beam epitaxy (MBE) which allows for the fabrication of ultra thin and highly perfect semiconductor epitaxial layers and the introduction of new devices based on the novel physical properties associated with carrier confinement. Carrier confinement in such structures, in the simplest way, is achieved by sandwiching the semiconductor layer with two wider band gap epitaxial semiconductor layers. If the narrower band gap material is in the form of a thin epitaxial layer, the carriers have 2 degrees of freedom within this layer (Fig. 11.1). The quantum properties appear in such structure for layer thicknesses smaller than ≈ 500 Å. The structure presenting this type of confinement are the well-known quantum wells (QW). Progress in reducing the carriers degrees of freedom i.e. increasing the degrees of confinement have been hampered by the complexity of the processing procedures. Indeed there is great interest from a technological point of view in realizing such structures since new device properties are expected [11.3]. For a smaller band gap region in the form of a thin wire (width smaller than: ≈ 500 Å) surrounded by wider band gap material, carriers will have one degree of freedom for motion along the wire axis. If the region of smaller gap material is in the form of a box (again with dimensions ≤ 500 Å), the carrier motion is confined to zero degrees of freedom (Fig. 11.1). When the wire and box exhibit dimensions which are smaller than the carrier deBroglie wavelength, their energy levels are quantized and these structures will be defined as quantum well wires (QWW) and quantum well boxes (QWB) respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Tsu, L. Esaki: Appl. Phys. Lett. 22, 562 (1973);

    Article  CAS  Google Scholar 

  2. L. Esaki, R. Tsu: IBM J. Res. Dev. 14, 61 (1970)

    Article  CAS  Google Scholar 

  3. R. Dingle, W. Wiegmann, C. K. Henry: Phys. Rev. Lett. 33, 827 (1974)

    Article  CAS  Google Scholar 

  4. H. Sakaki: Jpn. J. Appl. Phys. 19, L735 (1980)

    Article  CAS  Google Scholar 

  5. Y. Arakawa, K. Vahala, A. Yariv, K. Lau: Appl. Phys. Lett., 47, 142 (1985)

    Google Scholar 

  6. S. Luryi, F. Capasso: Appl. Phys. Lett. 47, 1348 (1985)

    Google Scholar 

  7. M. A. Reed, R. T. Bate, K. Bradshaw, W. M. Duncan, W. R. Frensley, J. W. Lee, H. D. Shi: J. Vac. Sci. Technol. B4 (1), 358 (1986)

    Article  CAS  Google Scholar 

  8. H. Temkins, G. J. Dolan, M. B. Panish, S. W. G. Chen: Appl. Phys. Lett. 50, 415 (1987)

    Google Scholar 

  9. W. J. Skocpol, L. D. Jackél, E. L. Hei, R. E. Howard, C. A. Fetter: Phys. Rev. Lett., 49, 951 (1981)

    Article  Google Scholar 

  10. P. M. Petroff, A. C. Gossard, R. A. Logan, W. Wiegmann: Appl. Phys. Lett. 41, 635 (1982)

    Article  CAS  Google Scholar 

  11. P. M. Petroff, A. C. Gossard, W. Wiegmann: Appl. Phys. Lett. 45, 6, 620 (1984)

    Article  CAS  Google Scholar 

  12. S. Yamada, T. Fukui, H. Saito: J. Vac. Sci. Tech., 50, 329 (1987)

    Google Scholar 

  13. T. Fukui, H. Saito: Appl. Phys. Lett. 50, 824 (1987)

    Article  CAS  Google Scholar 

  14. C. W. Tu, R. C. Miller, B. A. Wilson, P. M. Petroff, T. D. Harris, R. F. Kopf, S. K. Sputz, M. G. Lamont: J. Cyrst Growth 81, 159 (1987)

    Article  CAS  Google Scholar 

  15. T. Fuki, H. Saito: Jpn. J. Appl. Phys., 23, L521 (1984)

    Article  Google Scholar 

  16. J. Cibert, P. M. Petroff, D. J. Werder, S. J. Pearton, A. C. Gossard, J. H. English: Appl. Phys. Lett., 49, 223 (1986)

    Article  CAS  Google Scholar 

  17. Y. Hirayama, Y. Suzuki, H. Okamoto: Jpn. Appl. Phys., 24, 1498 (1985)

    Article  CAS  Google Scholar 

  18. P. M. Petroff, D. V. Lang, J. L. Strudel, R. A. Logan: “Scanning Electron Microscopy” Vol. 1, SEM Inc. AMF O’Hare, III. 60666 (USA) 325 (1978)

    Google Scholar 

  19. J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, J. H. English: Appl. Phys. Lett., 49, 1275 (1986)

    Article  CAS  Google Scholar 

  20. J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, J. H. English: Second International Conference on Superlattices, Gotteborg, Sweden (1986)

    Google Scholar 

  21. J. Cibert, P. M. Petroff: Phys. Rev. B 36, 6, 3243 (1987)

    Article  CAS  Google Scholar 

  22. J. F. Gibbons, W. H. Johnson, S. K. Milroie: Range Statistics in Semiconductors (Academic, New York 1975 )

    Google Scholar 

  23. K. B. Wong, M. Jaros, J. S. Hagon: J. Vac. Sci. Techn. (1987) to be published

    Google Scholar 

  24. D. J. Werder, S. J. Pearton: J. Appl. Phys. to be published

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petroff, P.M. (1990). Carrier Confinement to One and Zero Degrees of Freedom.. In: Capasso, F. (eds) Physics of Quantum Electron Devices. Springer Series in Electronics and Photonics, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74751-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74751-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74753-3

  • Online ISBN: 978-3-642-74751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics