Optimised Treatment Modalities for Hypoxic Tumour Cells

  • P. Workman
Conference paper
Part of the ESO Monographs book series (ESO MONOGRAPHS)


Solid tumours are made up of many different cell types, including heterogeneous neoplastic subpopulations. The targeting of therapeutic strategies to particular cell populations within tumours has therefore a sound rational basis. Considerable evidence supports the existence of hypoxic cells in solid tumours, and their role in limiting response to radiotherapy and chemotherapy [1,2].


Glutathione Adduct Sarcoma Melphalan Thiol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coleman CN: Hypoxia in tumours: a paradigm for the approach to biochemical and physiologic heterogeneity. J Natl Cancer Inst 1988 (80): 310–317PubMedCrossRefGoogle Scholar
  2. 2.
    Coleman CN: Chemical modification of radiation and chemotherapy. In De Vita V T Jr, Hellman S and Rosenberg S A (eds) Cancer: Principles and Practises of Oncology. Lippincott, Philadelphia (in press)Google Scholar
  3. 3.
    Thomlinson RH and Gray LH: The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955 (9): 539–549PubMedCrossRefGoogle Scholar
  4. 4.
    Chaplin DJ, Olive PL and Durand RE: Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 1987 (47): 597–601PubMedGoogle Scholar
  5. 5.
    Hall EH: Radiobiology for the Radiologist. New York, Harper and Row, 1978Google Scholar
  6. 6.
    Workman P: New drugs against hypoxic cells. Cancer Topics 1983 (4): 54–55Google Scholar
  7. 7.
    Heacock CS and Sutherland RM: Induction characteristics of oxygen regulated proteins. Int J Radiat Oncol Biol Phys 1986 (12): 1287–1290PubMedCrossRefGoogle Scholar
  8. 8.
    Rice GC, Hou CA and Schimke RT: Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci USA 1986 (83): 5978–5982PubMedCrossRefGoogle Scholar
  9. 9.
    Chapman JD: The detection and measurement of hypoxic cells in solid tumours. Cancer 1984 (54): 2441–2449PubMedCrossRefGoogle Scholar
  10. 10.
    Franko AJ: Misonidazole and other hypoxia markers: metabolism and applications. Int J Radiat Oncol Biol Phys 1986 (12): 1195–1202PubMedCrossRefGoogle Scholar
  11. 11.
    Horowitz M, Blasberg R, Molnar P, Strong J, Kornblith P, Pleasants R and Fenstermacher J: Regional (14C) misonidazole distribution in experimental RT-9 brain tumors. Cancer Res 1983 (43): 3800–3807PubMedGoogle Scholar
  12. 12.
    Urtasun RC, Chapman JD, Raleigh JA, Franko AJ and Koch CJ: Binding of 3H-misonidazole to solid human tumors as a measure of tumor hypoxia. Int J Radiat Oncol Biol Phys 1986 (12): 1263–1267PubMedCrossRefGoogle Scholar
  13. 13.
    Raleigh JA, Miller GG, Franko AJ, Koch CJ, Fuciarelli AF and Kelly DA: Fluorescence immunohistochemical detection of hypoxic cells in spheroids and tumours. Br J Cancer 1987 (56): 395–400Google Scholar
  14. 14.
    Raleigh JA, Franko AJ, Treiber EO, Lunt JA and Allen PS: Covalent binding of a fluorinated 2- nitroimidazole to EMT6 tumors in BALB/c mice: Detection by F-19 magnetic resonance at 2.35 T. Int J Radiat Oncol Biol Phys 1986 (12): 1243–1245PubMedCrossRefGoogle Scholar
  15. 15.
    Maxwell RJ, Workman P and Griffiths JR: Demonstration of tumor-selective retention of fluorinated nitroimidazole probes by magnetic resonance spectroscopy in vivo. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  16. 16.
    Dische S: Chemical sensitizers for hypoxic cells: A decade of experience in clinical radiotherapy. Radiother Oncol 1985 (3): 97–115PubMedCrossRefGoogle Scholar
  17. 17.
    Wasserman TH: Hypoxic cell radiosensitizers: Illusion or elusion? Int J Radiat Oncol Biol Phys 1988 (15): 779–781PubMedCrossRefGoogle Scholar
  18. 18.
    Workman P: Development of nitroimidazoles. In: Davis W, Maltoni C, Tanneberger SE (eds) The Control of Tumour Growth and its Biological Bases. Springer-Verlag, Berlin, 1983, pp 166–172Google Scholar
  19. 19.
    Workman P: Accelerated elimination of pimonidazole in mice: A possible approach to reduced neurotoxicity of the pimonidazole-etanidazole combination. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  20. 20.
    Brown JM and Workman P: Paritition coefficient as a guide to the development of radiosensitizers which are less toxic than misonidazole. Rad Res 1980 (82): 171–190CrossRefGoogle Scholar
  21. 21.
    Newman HFV, Bleehen NM, Ward R and Workman P.:Hypoxic cell radiosensitezers in the treatment of high grade gliomas: a new direction using combined Ro 03-8799 (pimonidazole) and SR 2508 (etanidazole). Int J Radiat Oncol Biol Phys 1988 (15): 677–684PubMedCrossRefGoogle Scholar
  22. 22.
    Coleman CN, Halsey J, Cox RS, Hirst K, Blaske T, Howes AE, Wasserman TH, Urtasun RC, Pajak T, Hancock S, Phillips TL and Noll L: Relationship between the neurotoxicity of the hypoxic cell radiosenstizer SR 2508 and the pharmacokinetic profile. Cancer Res 1987 (47): 319–322PubMedGoogle Scholar
  23. 23.
    Dennis MF, Stratford MRL, Wardman P, Watts ME: Cellular uptake of misonidazole and analogues with acidic or basic functions. Int J Radiat Biol 1985 (47): 629–643CrossRefGoogle Scholar
  24. 24.
    Dische S, Saunders MI, Bennet MH, Dunphy EP, Des Rochers C, Stratford MRL, Minchingon AI and Wardman P: A comparison of the tumour concentrations obtainable with misonidazole and Ro 03-8799. Br J Radiol 1986 (59): 911–917PubMedCrossRefGoogle Scholar
  25. 25.
    Stratford MRL, Dennis MF, Watts ME and Watfa RR: Radiosensitizer-DNA interactions. Br J Radiol 1988 (61): 861–862CrossRefGoogle Scholar
  26. 26.
    Roberts JT, Bleehen NM, Walton MI, and Workman P: A clinical phase I toxicity study of Ro 03-8799: plasma, urine, tumour and normal brain pharmacokinetics. Br J Radiol 1986 (59): 107–116PubMedCrossRefGoogle Scholar
  27. 27.
    Saunders MI, Anderson PJ, Bennet MH, Dische S, Minchinton A, Stratford MRL and Tothill M: The clinical testing of Ro 03-8799 - pharmacokinetics, toxicology, tissue and tumour concentrations. Int J Radiat Oncol Biol Phys 1984 (10): 1759–1763PubMedCrossRefGoogle Scholar
  28. 28.
    Honess DJ, Wasserman TH, Workman P, Ward R and Bleehen N M: Additivity of radiosensitization by the combination of SR 2508 (etanidazole) and Ro 03- 8799 (pimonidazole) in a murine tumour system. Int J Radiat Oncol Biol Phys 1988 (15): 671–675PubMedCrossRefGoogle Scholar
  29. 29.
    Bleehen NM, Newman HFV, Maughan TS and Workman P: A multiple dose study of the combined radiosensitizers Ro 03-8799 (pimonidazole) and SR 2508 (etanidazole). Int J Radiat Oncol Biol Phys (in press)Google Scholar
  30. 30.
    Adams GE, Ahmed I, Sheldon PW and Stratford U: RSU 1069, a 2-nitroimidazole containg an alkylating group: high efficiency as a radio- and chemosensitizer in vitro and in vivo. Int J Radiat Oncol Biol Phys 1984 (10): 1653–1656PubMedCrossRefGoogle Scholar
  31. 31.
    Walton MI and Workman P: Pharmacokinetics and metabolism of the mixed-function hypoxic cell sensitizer prototype RSU 1069 in mice. Cancer Chemother Pharmacol 1988 (22): 275–281PubMedCrossRefGoogle Scholar
  32. 32.
    Horwich A, Holliday SB, Deacon JM and Peckham MJ: A toxicity and pharmacokinetic study in man of the hypoxic-cell radiosensitizer RSU 1069. Br J Radiol 1986 (59): 1238–1240PubMedCrossRefGoogle Scholar
  33. 33.
    Sieman DW: Modification of chemotherapy by nitroimidazoles. Int J Radiat Oncol Biol Phys 1984 (10): 1585–1594CrossRefGoogle Scholar
  34. 34.
    Mulcahy RT and Trump DL: Clinical chemosensitization by misonidazole and related compounds: a critical evaluation. J Clin Oncol 1988 (6): 569–573PubMedGoogle Scholar
  35. 35.
    Workman P: Chemosensitization of lomustine by misonidazole, benznidazole and RSU 1069. Cancer Treat Rep 1986 (70): 1139–1141PubMedGoogle Scholar
  36. 36.
    Roberts JT, Bleehen NM, Lee FYF, Workman P and Walton MI: A phase I study of the combination of benznidazole and CCNU in man. Int J Radiat Oncol Biol Phys 1984 (10): 1745–1748PubMedCrossRefGoogle Scholar
  37. 37.
    Bleehen N M, Roberts J T and Newman H F V: A phase II study of CCNU with benznidazole for metastatic malignant melanoma. Int J Rad Oncol Biol Phys 1986 (12): 1401–1403CrossRefGoogle Scholar
  38. 38.
    Bleehen NM, Freedman L and Stenning S: Phase III study of CCNU with or without benznidazole for recurrent gliomas. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  39. 39.
    Coleman CN, Carlson RC, Halsey J, Kohler M, Gribble M, Sikic BI and Jacobs C: Enhancement of the clinical activity of melphalan by the hypoxic cell sensitizer misonidazole. Cancer Res 1988 (48): 3528–3532PubMedGoogle Scholar
  40. 40.
    Coleman CN, Bump EA and Kramer RA: Chemical modifiers of cancer treatment. J Clin Oncol 1988 (6): 709–733PubMedGoogle Scholar
  41. 41.
    Lee FYF and Workman P: Modification of CCNU pharmacokinetics by misonidazole. A major mechanism of chemosensitization. Br J Cancer 1983 (47): 659–669PubMedCrossRefGoogle Scholar
  42. 42.
    Lee FYF and Workman P: Misonidazole and CCNU: Further evidence for a pharmacokinetic mechanism of chemosensitization and therapeutic gain. Br J Cancer 1984 (49): 579–585PubMedCrossRefGoogle Scholar
  43. 43.
    Lee FYF and Workman P: Misonidazole protects mouse tumour and normal tissues from the toxicity of oral CCNU. Br J Cancer 1985 (51): 85–91PubMedCrossRefGoogle Scholar
  44. 44.
    Lee FYF, Workman P and Cheeseman KH: Misonidazole and benznidazole inhibit hydroxylation of CCNU by mouse liver microsomal cytochrome P- 450 in vitro. Biochem Pharmac 1987 (36): 1349–1355CrossRefGoogle Scholar
  45. 45.
    Workman P, Lee FYF, Walton MI, Roberts JT and Bleehen NM: Nitroimidazole inhibition of mouse and human cytochrome P-450 mediated hydroxylation of the chloroethylnitrosourea, CCNU. In: Benford DJ, Bridges JW and Gibson GG (eds) Drug Metabolism - from Molecules to Man. Taybr and Francis, London, 1987 pp 303–308Google Scholar
  46. 46.
    Hinchcliffe M, McNally NJ and Stratford MRL: The effect of radiosensitizers on the pharmacokinetics of melphalan and cyclosphosphamide in the mouse. Br J Cancer 1983 (48): 375–383CrossRefGoogle Scholar
  47. 47.
    Randhawa VS, Stewart FA, Denekamp J and Stratford MRL: Factors influencing the chemosensitization of melphalan by misonidazole. Br J Cancer 1985 (51): 219–228PubMedCrossRefGoogle Scholar
  48. 48.
    Horsman MR, Evans JW and Brown JM: Enhancement of melphalan-induced tumour cell killing by misonidazole: An interaction of competing mechanisms. Br J Cancer 1984 (50): 305–316PubMedCrossRefGoogle Scholar
  49. 49.
    Murray JC, Randhawa V and Denekamp J: The effects of melphalan and misonidazole on the vasculature of a murine sarcoma. Br J Cancer 1987 (55): 233–238PubMedCrossRefGoogle Scholar
  50. 50.
    Lee FYF and Workman P: Nitroimidazoles as modifiers of nitrosourea pharmacokinetics. Int J Radiat Oncol Biol Phys 1984 (10): 1627–1630PubMedCrossRefGoogle Scholar
  51. 51.
    Kennedy KA: Hypoxic cells as specific drug targets for chemotherapy. Anticancer Drug Design 1987 (2): 181–194Google Scholar
  52. 52.
    Zeman EM, Brown JM, Lemmon MJ, Hirst VK and Lee WW: SR 4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int J Radiat Oncol Biol Phys 1986 (12): 1239–1242PubMedCrossRefGoogle Scholar
  53. 53.
    Hewick DS: Reductive metabolism of nitrogen-containing functional groups. In: Jakoby WB, Bend JR, Caldwell J (eds) Metabolic Basis of Detoxication: Metabolism of Functional Groups. Academic Press, New York, 1982Google Scholar
  54. 54.
    Walton MI and Workman P: Nitroimidazole reductive metabolism: Quantitation and characterization of mouse tissue benznidazole nitroreductases in vivo and in vitro. Biochem Pharmac 1987 (36): 887–896CrossRefGoogle Scholar
  55. 55.
    Walton MI, Wolf CR and Workman P: Molecular enzymology of the reductive bioactivation of hypoxic cell cytotoxins. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  56. 56.
    Heimbrook DC and Sartorelli AC: Biochemistry of misonidazole reduction by NADPH-cytochrome c (P-450) reductase. Mol Pharmac 1986 (29): 168–172Google Scholar
  57. 57.
    Knox RJ, Friedlos F, Roberts JJ: The activation of CB 1954 (2, 4-dinitro-5-aziridinyl benzamide) in Walker cells is by bioreduction to DNA crosslinking agent. Br J Cancer 1988 (58): 252Google Scholar
  58. 58.
    Walton MI and Workman P: Pharmacokinetics and bioreductive metabolism of the benztriazine-di-N- oxide hypoxic cell cytotoxin SR 4233 in mice. Cancer Res (submitted)Google Scholar
  59. 59.
    Laderoute KR and Rauth AM: Identification of two major reduction products of the hypoxic cell toxin 3- amino-1,2,4-benzotriazine-1,4-dioxide. Biochem Pharmac 1986 (35): 3417–3420CrossRefGoogle Scholar
  60. 60.
    Laderoute K, Wardman P and Rauth AM: Molecular mechanisms for the hypoxia-dependent activation of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233). Biochem Pharmac 1988 (37): 1487–1495CrossRefGoogle Scholar
  61. 61.
    Powis G, Hodnett EM, Santone KS, Lee See K and Melder DC: Role of metabolism and oxidation reduction cycling in the cytotoxicity of antitumour quinoneimines and quinonediimines. Cancer Res 1987 (22): 2363–2370Google Scholar
  62. 62.
    Bachur NR, Gordon SL, Gee MV and Kon H: NADPH- cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proc Natl Acad Sci USA 1979 (76): 954–957PubMedCrossRefGoogle Scholar
  63. 63.
    Tomasz M, Lipman R, Chowdary D, Pawlak J, Verdine GL and Nakanishi K: Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA. Science 1987 (235): 1204–1208PubMedCrossRefGoogle Scholar
  64. 64.
    Vingen BA and Powis G.: Pulse radiolysis of anticancer quinones: radical life times, reactivity with oxygen and one-electron reduction potentials. Arch Biochem Biophys 1981 (209): 119–126CrossRefGoogle Scholar
  65. 65.
    Keyes SR, Fracasso PM, Heimbrook DC, Rockwell S, Sligar SG and Sartorelli AC: Role of NADPH- cytochrome C reductase and DT-diaphorase in the biotransformation of mitomycin C. Cancer Res 1984 (44): 5638–5643PubMedGoogle Scholar
  66. 66.
    Keyes SR, Rockwell S and Sartorelli AC: Enhancement of mitomycin C cytotoxicity to hypoxic tumor cells by dicoumarol in vivo and in vitro. Cancer Res 1985 (45): 213–216PubMedGoogle Scholar
  67. 67.
    Schlager JJ and Powis G: Mitomycin C is not metabolised by but is an inhibitor of human kidney NAD(P)H: (quinone-acceptor) oxidoreductase. Cancer Chemother Pharmacol 1988 (22): 126–130PubMedCrossRefGoogle Scholar
  68. 68.
    Fracasso PM and Sartorelli AC: Cytotoxicity and DNA lesions produced by mitomycin C and porfiromycin in hypoxic and aerobic EMT6 and Chinese hamster ovary cells. Cancer Res 1986 (46) 3939–3944PubMedGoogle Scholar
  69. 69.
    Chakrabarty S, Danels YJ, Long BH, Willson JKV and Brattain MG: Circumvention of deficient activation in mitomycin C-resistant human colonic carcinoma cells by the mitomycin C analogue BMY 25282. Cancer Res 1986 (46): 3456–3458PubMedGoogle Scholar
  70. 70.
    Kooistra KL and Workman P: Analysis and preclinical pharmacology of the indoloquinone E0.9. Cancer Chemother Pharmacol (submitted)Google Scholar
  71. 71.
    Powis G: Anthracycline metabolism and free radical formation. In: Powis G and Prough R A (eds) Metabolism and Action of Anticancer Drugs. Taylor and Francis, London, 1987, pp 211–295Google Scholar
  72. 72.
    Walton MI, Bleehen NM and Workman P: Heat- stimulated nitroreductive bioactivation of the 2- nitroimidazole benznidazole in vitro. Biochem Pharmacol 1987 (36): 2627–2632PubMedCrossRefGoogle Scholar
  73. 73.
    Walton MI, Bleehen NM and Workman P: Stimulation by localised tumour hyperthermia of the nitroreductive bioactivation of the 2-nitroimidazole benznidazole in mice. Cancer Res (in press)Google Scholar
  74. 74.
    Brown JM: Exploitation of bioreductive agents with vasoactive drugs. In: Fielden EM, Fowler JF, Hendry JH and Scott D (eds) Radiation Research. Taylor and Francis, London, 1987 pp 719–724Google Scholar
  75. 75.
    Stratford U, Adams GE, Godden J, Nolan J, Howells N and Timpson N: Potentiation of the anti-tumour effect of melphalan by the vasoactive agent, hydralazine. Br J Cancer 1988 (58): 122–127PubMedCrossRefGoogle Scholar
  76. 76.
    Evetoch JL, Bissery MC, Chabot GG, Simpson NE, McCoy CL, Heibrun LK and Corbett TH: Flavone acetic acid (NSC 347512)-induced modulation of murine tumour physiology monitored by in vivo nuclear magnetic resonance spectroscopy. Cancer Res 1988 (48): 4749–4755Google Scholar
  77. 77.
    Adams GE, Barnes DWH, du Boulay C, Loutit JF, Cole S, Sheldon PW, Stratford IJ, van den Aardweg GJMJ, Hopewell JW, White RD, Kneen G, Nethersell AB and Edwards JC: Induction of hypoxia in normal and malignant tissues by changing the oxygen affinity of hemoglobin-implications for therapy. Int J Radiat Oncol Biol Phys 1986 (12): 1299–1302PubMedCrossRefGoogle Scholar
  78. 78.
    Hirst DG, Hazlehurst JL and Brown JM: The effect of hematocrit on tumour sensitivity to X-rays. Int J Rad Biol 1984 (46): 345–354CrossRefGoogle Scholar
  79. 79.
    Kinsella TJ, Dobson PP, Russo A, Mitchell JB and Fornace AJ: Modulation of X-ray DNA damage by SR 2508 with or without buthionine sulfoximine. Int J Radiat Oncol Biol Phys 1986 (12): 1127–1130PubMedCrossRefGoogle Scholar
  80. 80.
    Phillips TL, Mitchell JB, De Graff W, Russo A and Glatstein E: Variation in sensitizing efficiency for SR 2508 in human cells dependent on glutathione content. Int J Radiat Oncol Biol Phys 1986 (12): 1627–1635PubMedCrossRefGoogle Scholar
  81. 81.
    Rice GC, Bump EA, Shrieve DC, Lee W and Kovacs M: Quantitative analysis of cellular glutathione in Chines hamster ovary cells by flow cytometry utilizing monochlorobimane: Some applications to radiation and drug resistance in vitro and in vivo. Cancer Res 1986 (46): 6105–6110PubMedGoogle Scholar
  82. 82.
    Workman P and Watson JV: Flow cytoenzymology of glutathione metabolism. Cytometry 1987 (Suppl 1 ): 270Google Scholar
  83. 83.
    Workman P, Cox H and Watson JV: Glutathione metabolism in human lymphocytes by flow cytometry. Cytometry 1988 (Suppl 2 ): 47Google Scholar
  84. 84.
    Begg AC, Hodgkiss RJ, McNally NJ, Middleton RW, Stratford MRL and Terry NHA: Fluorescent markers for hypoxic cells: A comparison of two compounds on three cell lines. Br J Radiol 1985 (58): 645–654PubMedCrossRefGoogle Scholar
  85. 85.
    Begg AC, Engelhardt EL, Hodgkiss RJ, McNally NJ, Terry NHA and Wardman P: Nitroakridin 3582: A fluorescent nitroacridine stain for identifying hypoxic cells. Br J Radiol 1983 (56): 970–973PubMedCrossRefGoogle Scholar
  86. 86.
    Chaplin DJ, Durand RE and Olive PL: Cell selection from a murine tumour using the fluorescent probe Hoechst 33342. Br J Cancer 1985 (51): 569–572PubMedCrossRefGoogle Scholar
  87. 87.
    Olive PL, Chaplin DJ and Durand RE: Pharmacokinetics, binding and distribution of Hoechst 33342 in spheroids and murine tumours. Br J Cancer 1985 (52): 739–746PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. Workman
    • 1
  1. 1.MRC Clinical Oncology and Radiotherapeutics UnitMRC CentreCambridgeUK

Personalised recommendations