Skip to main content

Oncogene Requirements for Tumorigenicity: Cooperative Effects between Retroviral Oncogenes

  • Conference paper
Oncogenes and Retroviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 148))

Abstract

Several independent lines of evidence have established an association between the induction of a malignant phenotype and the expression of specific pairs of oncogenes. The first line of support comes from investigations involving the tumorigenic conversion of primary rodent cells by complementary pairs of cotransfected oncogenes (see reviews by Land et al. 1983b; Weinberg 1985). Second, the genetic analysis of cell lines derived from neoplastic tissue has revealed that some contain alterations in at least two cellular genes termed proto-oncogenes (reviewed in Bishop 1987). Such results have suggested that multiple genetic mutations are required for tumor formation, a notion based on tumor induction studies involving chemical carcinogens (see review by Sukumar this volume). Third, a variety of interactions between retroviral oncogenes, denoted as v-oncs, has been recently described in different types of retrovirus-transformed cells. These interaction are manifested both in vivo and in vitro and result in tumor induction (synergy), tumor augmentation (enhancement), cell proliferation in the absence of specialized culture conditions, or growth factor-independent cell proliferation. In addition to this body of evidence, a unique group of avian retroviruses exists in which each virus encodes pairs of cooperating oncogenes (reviewed in Graf and Beug 1983; Kahn et al. 1986b). The existence of such naturally occurring viruses implies that oncogene complementation represents one process of rapid tumor formation in nature and is not merely a novel laboratory phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams HD, Rohrschneider LR, Eisenman RN (1982) nuclear localization of the putative transforming protein of avian myelocytomatosis. Cell 29: 427–439

    CAS  PubMed  Google Scholar 

  • Adkins B, Leutz A, Graf T (1984) autocrine growth induced by src-related oncogenes in transformed chicken myeloid cells. Cell 39: 439–445

    CAS  PubMed  Google Scholar 

  • Alema S, Tato F, Boettiger D (1985) Myc and src oncogenes have complementary effects on cell proliferation and expression of specific extracellular matrix components in definitive chondroblasts. Mol cell biol 5: 538–544

    CAS  PubMed  Google Scholar 

  • Alexander RW, Moscovici C, Vogt PK (1979) avian oncovirus mill hill no. 2: pathogenicity in chickens. J NCI 62: 359–366

    CAS  PubMed  Google Scholar 

  • Alitalo K, Ramsay G, Bishop JM, Pfeifer SO, Colby WW, Levinson AD (1983) identification of nuclear proteins encoded by viral and cellular myc oncogenes. Nature 306: 274–277

    CAS  PubMed  Google Scholar 

  • Anderson SM, Scolnick EM (1983) Construction and isolation of transforming murine retrovirus containing the src gene of Rous sarcoma virus. J virol 46: 594–605

    CAS  PubMed  Google Scholar 

  • Anderson SM, Klinken SP, Hankins WD (1985) a murine recombinant retrovirus containing the src oncogene transforms erythroid precursor cells in vitro. Mol cell biol 5: 3369–3375

    CAS  PubMed  Google Scholar 

  • Bechade C, Calothy G, Pessac B, Martin P, Coll J, Denhez F, Saule S, Ghysdael J, Stehelin D (1985) Induction of proliferation or transformation of neuroretina 1 cells by the mil and myc viral oncogenes. Nature 316: 559–562

    CAS  PubMed  Google Scholar 

  • Bechade C, Dambrine G, David-Pfeuty T, Esnault E, Calothy G (1988) Transformed and tumorigenic phenotypes induced by avian retroviruses containing the v-mil oncogene. J Virol 62: 1211–1218

    CAS  PubMed  Google Scholar 

  • Benedict SH, Maki Y, Vogt PK (1985) Avian retrovirus SI3: properties of the genome and of the transformation-specific protein. Virology 145: 154–164

    CAS  PubMed  Google Scholar 

  • Beug H, Graf T (1980) Transformation parameters of chicken embryo fibroblasts infected with the ts34 mutant of avian erythroblastosis virus. Virology 100: 348–356

    CAS  PubMed  Google Scholar 

  • Beug H, Hayman M (1984) Temperature-sensitive mutants of avian erythroblastosis virus: surface expression of the erbB product correlates with transformation. Cell 36: 963–972

    CAS  PubMed  Google Scholar 

  • Beug H, von Kirchbach A, Döderlein G, Conscience J-F, Graf T (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18: 375–390

    CAS  PubMed  Google Scholar 

  • Beug H, Doederlein G, Freudenstein C, Graf T (1982 a) Erythroblast cell lines transformed by a temperature-sensitive mutant of avian erythroblastosis virus: a model system to study erythroid differentiation in vitro. J Cell Physiol Suppl 1: 195–207

    CAS  Google Scholar 

  • Beug H, Palmieri S, Freudenstein C, Zentgraf H, Graf T (1982b) Hormone-dependent terminal differentiation in vitro of chicken erythroleukemia cells transformed by ts mutants of avian erythroblastosis virus. Cell 28: 907–919

    CAS  PubMed  Google Scholar 

  • Beug H, Hayman MJ, Graf T (1982c) Myeloblasts transformed by the avian acute leukemia virus E26 are hormone-dependent for growth and for the expression of a putative myb-containing protein, pl35 E26. EMBO J 1: 1069–1073

    CAS  PubMed  Google Scholar 

  • Beug H, Hayman MJ, Graf T (1982d) Leukemia as a disease of differentiation: retroviruses causing acute leukemia in chickens. Cancer Surv 1: 105–230

    Google Scholar 

  • Beug H, Leutz, Kahn P, Graf T (1984) Ts mutants of E26 leukemia virus allow transformed myeloblasts, but not erythroblasts or fibroblasts, to differentiate at the nonpermissive temperature. Cell 39: 579–588

    CAS  PubMed  Google Scholar 

  • Beug H, Hayman MJ, Graf T, Benedict SH, Wallbank AM, Vogt PK (1985a) S13, a rapidly oncogenic replication-defective avian retrovirus. Virology 145: 141–153

    CAS  PubMed  Google Scholar 

  • Beug H, Kahn P, Doederlein G, Hayman MJ, Graf T (1985b) Characterization of hematopoietic cells transformed in vitro by AEV-H, a v-erbB-containing avian erythroblastosis virus. In: Neth R, Gallo RC, Greaves MF, Janka G (eds) Modern trends in human leukemia VI. Springer, Berlin Heidelberg New York, pp 290–297

    Google Scholar 

  • Beug H, Hayman MJ, Raines MB, Kung HJ, Vennström B (1986) Rous-associated virus 1-induced erythroleukemic cells exhibit a weakly transformed phenotype in vitro and release c-erbB- containing retroviruses unable to transform fibroblasts. J Virol 57: 1127–1138

    CAS  PubMed  Google Scholar 

  • Beug H, Blundell PA, Graf T (1987) Reversibility of differentiation and proliferative capacity in avian myelomonocytic cells transformed by tsE26 leukemia virus. Genes Dev 1: 277–286

    CAS  PubMed  Google Scholar 

  • Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev. Biochem 52: 301–354

    CAS  Google Scholar 

  • Bishop JM (1987) The molecular genetics of cancer. Science 235: 305–311

    CAS  PubMed  Google Scholar 

  • Bister K, Loliger H-C, Duesberg PH (1979) Oligonucleotide map and protein of CMII: detection of conserved and nonconserved genetic elements in avian acute leukemia viruses CMII, MC29, and MH2. J Virol 32: 208–219

    CAS  PubMed  Google Scholar 

  • Bister K, Ramsay G, Hayman MJ, Duesberg PH (1980) OK 10, an avian acute leukemia virus of the MC29 group with a unique genetic structure. Proc Natl Acad Sci USA 77: 7142–7146

    CAS  PubMed  Google Scholar 

  • Bister K, Nunn M, Moscovici C, Perbal B, Baluda MA, Duesberg PH (1982a) Acute leukemia viruses E26 and avian myeloblastosis virus have related transformation-specific RNA-sequences, but different genetic structures, gene products, and oncogenic properties. Proc Natl Acad Sci USA 79: 3677–3681

    CAS  Google Scholar 

  • Bister K, Ramsay GM, Hayman MJ (1982b) Deletions within the transformation-specific RNA sequences of acute leukemia virus MC29 give rise to partially-transformation-defective mutants. J Virol 41: 754–766

    CAS  Google Scholar 

  • Bister K, Jansen HW, Graf T, Enrietto PJ, Hayman MJ (1983) Genome structure of HBI, a variant of acute leukemia virus MC29 with unique oncogenic properties. J Virol 46: 337–346

    CAS  PubMed  Google Scholar 

  • Blasi E, Mathieson BJ, Varesio L, Cleveland JL, Borchert PA, Rapp UR (1985) Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature 318: 667–670

    CAS  PubMed  Google Scholar 

  • Boettiger D, Anderson S, Dexter TM (1984) Effect of src infection on long-term marrow cultures: increased self-renewal of hemopoietic progenitor cells without leukemia. Cell 36: 763–773

    CAS  PubMed  Google Scholar 

  • Boucher P, Koning A, Privalsky ML (1988) The avian erythroblastosis virus erbA oncogene encodes a DNA-binding protein exhibiting distinct nuclear and cytoplasmic subcellular localizations. J Virol 62: 534–544

    CAS  PubMed  Google Scholar 

  • Boulukos KE, Pognonec P, Begue A, Galibert F, Gesquiere JC, Stehelin D, Ghysdael J (1988) Identification in chickens of an evolutionarily conserved cellular ets-2 gene (c-ets-2) encoding nuclear proteins related to the products of the c-ets proto-oncogene. EMBO J 7: 697–705

    CAS  PubMed  Google Scholar 

  • Boyle WS, Lampert MA, Lipsick JS, Baluda MA (1984) Avian myeloblastosis virus and E26 virus oncogene products are nuclear proteins. Proc Natl Acad Sci USA 81: 4265–4269

    CAS  PubMed  Google Scholar 

  • Brugge JS, Erikson RL (1977) Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269: 346–348

    CAS  PubMed  Google Scholar 

  • Bunte T, Grieser-Wilke I, Donner P, Moelling K (1982) Association of gag-myc proteins from avian myelocytomatosis virus wild-type and mutants with chromatin. EMBO J 1: 919–927

    CAS  PubMed  Google Scholar 

  • Bunte T, Grieser-Wilke I, Moelling K (1983) The transforming protein of the MC29-related virus CMII is a nuclear DNA-binding protein whereas MH2 codes for a cytoplasmic RNA-DNA binding polyprotein. EMBO J 2: 1087–1092

    CAS  PubMed  Google Scholar 

  • Carins J, Logan J (1983) Step by step into carcinogenesis. Nature 304: 582–583

    Google Scholar 

  • Calothy G, Pessac B (1987) Growth transformation by v-myc (lett). Nature 329: 22

    CAS  PubMed  Google Scholar 

  • Calothy G, Poirier F, Dambrine G, Mignatti P, Combes P, Pessac B (1979) Expression of viral oncogenes in differentiating chick embryo neuroretinal cells infected with avian tumor viruses. Cold Spring Harbor Symp Quant Biol 44: 983–990

    Google Scholar 

  • Cartwright CA, Eckhart W, Simon S, Kaplan PL (1987) Cell transformation by pp60c-src mutated in the carboxy-terminal regulatory domain. Cell 49: 83–91

    CAS  PubMed  Google Scholar 

  • Casalbore P, Agostini E, Alema S, Falcone G, Tato F (1987) The v-myc oncogene is sufficient to induce growth transformation of chick neuroretina cells. Nature 326: 188–190

    CAS  PubMed  Google Scholar 

  • Choi O-R, Trainor C, Graf T, Beug H, Engel JD (1986) A single amino acid substitution in v-erbB confers a thermolabile phenotype to is 167 avian erythroblastosis virus-transformed erythroid cells. Mol Cell Biol 6: 1751–1759

    CAS  PubMed  Google Scholar 

  • Cleveland JL, Jansen HW, Bister K, Frederickson TN, Morse HC III, Ihle JN, Rapp UR (1986a) Interaction between raf and myc oncogenes in transformation in vivo and in vitro. J Cell Biochem 30: 195–218

    CAS  PubMed  Google Scholar 

  • Cleveland JL, Weinstein Y, Ihle JN, Askew DS, Rapp UR (1986 b) Transformation and insertional mutagenesis in vitro of primary hematopoietic stem cell cultures. Curr Top Microbiol Immunol 132: 44–54

    CAS  Google Scholar 

  • Cohen S, Ushiro H, Stoscheck C, Chinkers M (1982) A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem 257: 1523–1531

    CAS  PubMed  Google Scholar 

  • Coll J, Righi M, de Taisne C, Dissous C, Gegonne G, Stehelin D (1983) Molecular cloning of the acute transforming retrovirus MH2 reveals a novel cell derived sequence (v-mil) in addition of the myc oncogene. EMBO J 2: 2189–2194

    CAS  Google Scholar 

  • Conneely OM, Sullivan WP, Toft DO, Birnbaumer M, Cook RG, Maxwell BL, Zarucki- Schulz T, Greene GL, Schrader WT, O’Malley BW (1986) Molecular cloning of the chicken progesterone receptor. Science 233: 767–770

    CAS  PubMed  Google Scholar 

  • Cook WD, Metcalf D, Nicola NA, Burgess AW, Walker F (1985) Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism. Cell 41: 677–683

    CAS  PubMed  Google Scholar 

  • Cooper GM (1982) Cellular transforming genes. Science 218: 801–806

    Google Scholar 

  • Cooper GM, Lane M-A (1984) Cellular transforming genes and oncogenesis. Biochim Biopliys Acta 738: 9–20

    CAS  Google Scholar 

  • Corcoran LM, Adams JM, Dunn AR, Cory S (1984) Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion. Cell 37: 113–122

    CAS  PubMed  Google Scholar 

  • Crisanti P, Lorinet AM, Calothy G, Pessac B (1985) Glutamic acid decarboxylase activity is stimulated in quail retina neuronal cells transformed by Rous sarcoma virus and is regulated by pp60v-src. EMBO J 4: 1467–1470

    CAS  PubMed  Google Scholar 

  • Damm K, Beug H, Graf T, Vennstrom B (1987) A single point mutation in erbA restores the erythroid transforming potential of a mutant avian erythroblastosis virus (AEV) defective in both erbA and erbB oncogenes. EMBO J 6: 375–382

    CAS  PubMed  Google Scholar 

  • Decker SJ (1985) Phosphorylation of the erbB gene product from avian erythroblastosis virus transformed chick fibroblasts. J Biol Chem 60: 2003–2006

    Google Scholar 

  • Denhez F, Heimann B, d’Auriol L, Graf T, Coquillaud M, Coll J, Galibert F, Moelling K, Stehelin D, Ghysdael J (1988) Replacement of lys 622 in the ATP binding domain of pl00gag-mil abolish the in vitro autophosphorylation of the protein and the biological properties of the v-mil oncogene of MH2 virus. EMBO J 7: 541–546

    CAS  PubMed  Google Scholar 

  • Dexter TM, Boettiger D, Spooncer E (1985) Self-renewal of haemopoietic stem cells: the roles of the environment, of growth factors and of the src oncogene. In: Neth R, Gallo RC, Greaves MF, Janka G (eds) Modern trends in human leukemia VI. Springer, Berlin Heidelberg New York, pp 363–371

    Google Scholar 

  • Dolberg DS, Bissell MJ (1984) Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 309: 552–556

    CAS  PubMed  Google Scholar 

  • Donner P, Grieser-Wilkie I, Moelling K (1982) Nuclear localization and DNA binding of the transforming gene product of avian myelocytomatosis virus. Nature 296: 262–266

    CAS  PubMed  Google Scholar 

  • Donner P, Bunte T, Grieser-Wilkie I, Moelling K (1983) Decreased DNA-binding ability of purified transformation-specific proteins from deleted mutants of the acute avian leukemia virus MC29. Proc Natl Acad Sci USA 80: 2861–2865

    CAS  PubMed  Google Scholar 

  • Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erbB oncogene protein sequences. Nature 307: 521–527

    CAS  PubMed  Google Scholar 

  • Duesberg PH (1983) Retroviral transforming genes in normal cells? Nature 304: 219–226

    CAS  PubMed  Google Scholar 

  • Duesberg PH, Vogt PK (1979) Avian acute leukemia viruses MC29 and MH2 share specific RNA sequences: evidence for a second class of transforming genes. Proc Natl Acad Sci USA 76: 1633–1637

    CAS  PubMed  Google Scholar 

  • Duesberg PH, Bister K, Moscovici C (1980) Genetic structure of avian myeloblastosis virus released from transformed myeloblasts as a defective particle. Proc Nat. Acad Sci USA 77: 5120–5124

    Google Scholar 

  • Durban EM, Boettiger D (1981 a) Differential effects of transforming avian RNA tumor viruses on avian macrophages. Prod Natl Acad Sci USA 78: 3600–3604

    CAS  Google Scholar 

  • Durban EM, Boettiger D (1981 b) Replicating, differentiated macrophages can serve as in vitro targets for transformation by avian myeloblastosis virus. J Virol 37: 488–492

    CAS  Google Scholar 

  • Eisenman RN, Tachibana CY, Abrams HD, Hann SR (1985) v-myc and c-myc-encoded proteins are associated with the nuclear matrix. Mol Cell Biol 5: 114–126

    CAS  PubMed  Google Scholar 

  • Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984) Participation of p53 cellular tumor antigen in transformation of normal embryonic cells. Nature 312: 646–649

    CAS  PubMed  Google Scholar 

  • Enrietto PJ, Hayman MJ (1982) Restriction enzyme-analysis of partially transformation-defective mutants of acute leukemia virus MC29. J Virol 44: 711–715

    CAS  PubMed  Google Scholar 

  • Enrietto PJ, Hayman MJ, Ramsay GM, Wyke J A, Payne LN (1983 a) Altered pathogenicity of avian myelocytomatosis (MC29) viruses with mutations in the v-myc gene. Virology 124: 164–172

    CAS  Google Scholar 

  • Enrietto PJ, Payne LN, Hayman MJ (1983 b) A recovered avian myelocytomatosis virus which induces lymphomas in chickens: pathogenic properties and their molecular basis. Cell 35: 369–379

    CAS  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240: 889–895

    CAS  PubMed  Google Scholar 

  • Feldman RA, Hanafusa T, Hanafusa H (1980) Characterization of protein kinase activity associated with the transforming gene product of Fujiami sarcoma virus. Cell 22: 757–765

    CAS  PubMed  Google Scholar 

  • Friis RR (1978) Temperature-sensitive mutants of avian RNA tumor viruses: a review. Curr Top Microbiol Immunol 79: 261–293

    CAS  PubMed  Google Scholar 

  • Frykberg L, Palmieri S, Beug H, Graf T, Hayman MJ, Vennstrom B (1983) Transforming capacities of avian erythroblastosis virus mutants deleted in the erbA or erbB oncogenes. Cell 32: 227–238

    CAS  PubMed  Google Scholar 

  • Fung T, Fadly AM, Crittenden LB, Kung H-J (1981) On the mechanism of retrovirus-induced avian lymphoid leukosis: deletion and integration of the proviruses. Proc Natl Acad Sci USA 78: 3418–3422

    CAS  PubMed  Google Scholar 

  • Fung T, Lewis WG, Kung H-J, Crittenden LB (1983) Activation of the cellular oncogene c-erbB by LTR insertion: molecular basis for induction of erythroblastosis by avian leukosis virus. Cell 33: 357–368

    CAS  PubMed  Google Scholar 

  • Galibert F, Dupont de Dinechin S, Righi M, Stéhelin D (1984) The second oncogene mil of avian retrovirus MH2 is related to the src family. EMBO J 3: 1333–1338

    CAS  Google Scholar 

  • Gamett DC, Tracy SE, Robinson HL (1986) Differences in sequences encoding the carboxyl-terminal domain of the epidermal growth factor receptor correlate with differences in the disease potential of viral erbB genes. Proc Natl Acad Sci USA 83: 6053–6057

    CAS  PubMed  Google Scholar 

  • Gandrillon O, Jurdic P, Benchaibi M, Xiao J-H, Ghysdael J, Samarut J (1987) Expression of the v-erbA oncogene in chicken embryo fibroblasts stimulates their proliferation in vitro and enhances tumor growth in vivo. Cell 49: 687–697

    CAS  PubMed  Google Scholar 

  • Gazzolo L, Moscovici C, Moscovici MG, Samarut J (1979) Response of hemopoietic cells to avian acute leukemia viruses: effects on the differentiation of the target cells. Cell 16: 627–638

    CAS  PubMed  Google Scholar 

  • Gazzolo L, Samarut J, Bouabdelli M, Blanchet JP (1980) Early precursors in the erythroid lineage are the specific target cells of avian erythroblastosis virus in vitro. Cell 22: 683–691

    CAS  PubMed  Google Scholar 

  • Ghydael J, Neil JC, Vogt PK (1981) A third class of avian sarcoma viruses, defined by related transformation-specific proteins of Yamaguchi 73 and Esh sarcoma virus. Proc Natl Acad Sci USA 78: 2611–2615

    Google Scholar 

  • Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629

    CAS  PubMed  Google Scholar 

  • Gilmore T, DeClue JE, Martin GS (1985) Protein phosphorylation at tyrosine is induced by the v-erbB gene product in vivo and in vitro. Cell 40: 609–618

    CAS  PubMed  Google Scholar 

  • Gionti E, Pontarelli G, Cancedda R (1985) Avian myelocytomatosis virus immortalizes differentiated quail chondrocytes. Proc Natl Acad Sci USA 82: 2756–2760

    CAS  PubMed  Google Scholar 

  • Godowski PJ, Rusconi S, Miesfeld R, Yamamoto KR (1987) Glucocorticoid receptor mutants are constitutive activators of transcriptional enhancement. Nature 325: 365–368

    CAS  PubMed  Google Scholar 

  • Golay J, Introna M, Graf T (1988) A single point mutation in the v-ets oncogene affects both erythroid and myelomonocytic cell differentiation. Cell 55: 1147–1158

    CAS  PubMed  Google Scholar 

  • Graf T, Beug H (1978) Avian leukemia viruses: interaction with their target cells in vivo and in vitro. Biochim Biophys Acta 516: 269–299

    CAS  PubMed  Google Scholar 

  • Graf T, Beug H (1983) Role of the v-erbA and v-erbB oncogenes of avian erythroblastosis virus in erythroid cell transformation. Cell 34: 7–9

    CAS  PubMed  Google Scholar 

  • Graf T, Stéhelin D (1982) Avian leukemia viruses: oncogenes and genome structure. Biochim Biophys Acta 651: 245–271

    CAS  PubMed  Google Scholar 

  • Graf T, Royer-Pokora B, Schubert GE, Beug H (1976) Evidence for the multiple oncogenic potential of cloned leukemia virus: in vitro and in vivo studies with avian erythroblastosis virus. Virology 71: 423–433

    CAS  PubMed  Google Scholar 

  • Graf T, Fink D, Beug H, Royer-Pokora B (1977a) Oncornavirus-induced sarcoma formation obscured by rapid development of lethal leukemia. Cancer Res 37: 59–63

    CAS  PubMed  Google Scholar 

  • Graf T, Royer-Pokora B, Meyer-Glauner W, Beug H (1977b) Tumor specificity of acute avian leukemia viruses reflected by their transformation target cell specificity in vitro. Med Microbiol Immunol (Beri) 164: 139–153

    CAS  Google Scholar 

  • Graf T, Ade N, Beug H (1978) Temperature-sensitive mutant of avian erythroblastosis virus suggests a block of differentiation as mechanism of leukaemogenesis. Nature 257: 496–501

    Google Scholar 

  • Graf T, Oker-Blom N, Todorov TG, Beug H (1979) Transforming capacities and defectiveness of avian leukemia viruses OKIO and E26. Virology 99: 431–436

    CAS  PubMed  Google Scholar 

  • Graf T, Beug H, Hayman MJ (1980) Target cell specificity of defective avian leukemia viruses: hematopoietic target cells for a given virus type can be infected by not transformed by strains of a different type. Proc Natl Acad Sci USA 77: 389–393

    CAS  PubMed  Google Scholar 

  • Graf T, von Kirchbach A, Beug H (1981) Characterization of hemapoietic target cells of AEV, MC29 and AMV avian leukemia viruses. Exp Cell Res 131: 331–343

    CAS  PubMed  Google Scholar 

  • Graf T, von Weizsaecker F, Grieser S, Coll J, Stéhelin D, Patschinsky T, Bister KvBechade C, Calothy G, Leutz A (1986) v-mil induces autocrine growth and enhanced tumorigenicity in v-myc-transformed avian macrophages. Cell 45: 357–364

    CAS  PubMed  Google Scholar 

  • Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467

    CAS  PubMed  Google Scholar 

  • Green S, Walter P, Kumar V, Krust A, Bornert J-M, Argos P, Chambon P (1986) Human oestrogen receptor cDNA: sequence, expression and homology to v-erbA. Nature 320: 134–139

    CAS  PubMed  Google Scholar 

  • Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1985) Sequence and expression of human estrogen receptor complementary DNA. Science 231: 1150–1154

    Google Scholar 

  • Hanafusa H (1977) Cell transformation by RNA tumor viruses. Compr Virol 10: 401–483

    CAS  Google Scholar 

  • Hanafusa T, Mathey-Prevot B, Feldman RA, Hanafusa H (1981) Mutants of Fujiami sarcoma virus which are temperature-sensitive for cellular transformation and protein kinase activity. J Virol 38: 347–355

    CAS  PubMed  Google Scholar 

  • Hankins WD, Scolnick EM (1981) Harvey and Kirsten sarcoma viruses promote the growth and differentiation of erythroid precursor cells in vitro. Cell 26: 91–97

    CAS  PubMed  Google Scholar 

  • Hankins WD, Troxler D (1980) Polycythemia and anemia inducing erythroleukemia viruses exhibit differential erythroid transforming effects in vitro. Cell 22: 693–699

    CAS  PubMed  Google Scholar 

  • Hankins WD, Kost TA, Koury MJ, Krantz SB (1978) Erythroid bursts produced by Friend leukemia virus in vitro. Nature 276: 506–508

    CAS  PubMed  Google Scholar 

  • Hankins WD, Kost TA, Pragneil IB (1982) The myeloproliferative sarcoma virus causes transformation of erythroid progenitor cells in vitro. Mol Cell Biol 2: 138–146

    CAS  PubMed  Google Scholar 

  • Hann SR, Abrams HD, Rohrschneider LR, Eisenman RN (1983) Proteins encoded by v-myc and c-myc oncogenes: identification and localization in acute leukemia virus transformants and bursal lymphoma cell lines. Cell 34: 789–798

    CAS  PubMed  Google Scholar 

  • Hayman MJ (1983) Acute avian leukemia viruses. Curr Top Microbiol Immunol 103: 109–125

    CAS  PubMed  Google Scholar 

  • Hayman MJ, Beug H (1984) Identification of a form of the avian erythroblastosis virus erbB gene product at the cell surface. Nature 309: 460–462

    CAS  PubMed  Google Scholar 

  • Hayman MJ, Ramsay GM, Savin K, Kitchener G, Graf T, Beug H (1983) Identification and characterization of the avian erythroblastosis virus erbB gene product as a membrane glycoprotein. Cell 32: 579–588

    CAS  PubMed  Google Scholar 

  • Hayman MJ, Kitchener G, Vogt PK, Beug H (1985) The putative transforming protein of SI3 avian erythroblastosis virus is a transmembrane glycoprotein with an associated protein kinase activity. Proc Natl Acad Sci USA 82: 8237–8241

    CAS  PubMed  Google Scholar 

  • Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290: 475–480

    CAS  PubMed  Google Scholar 

  • Heard JM, Roussel MF, Rettenmier CW, Scherr CJ (1987) Multilineage hematopoietic disorders induced by transplantation of bone marrow cells expressing the v-fms oncogene. Cell 51: 663–673

    CAS  PubMed  Google Scholar 

  • Hentzen D, Renucci A, le Guellec D, Benchaibi M, Jurdic P, Gandrillon O, Samarut J (1987) The chicken c-erbA proto-oncogene is preferentially expressed in erythrocytic cells during late stages of differentiation. Mol Cell Biol 7: 2416–2424

    CAS  PubMed  Google Scholar 

  • Hihara H, Yamamoto H, Shimohira H, Arai K, Shimizu T (1983) Avian erythroblastosis virus isolated from chick erythroblastosis induced by lymphatic leukemia virus subgroup A. J NCI 70: 891–897

    CAS  Google Scholar 

  • Hoelzer JD, Lewis RB, Wasmuth CF, Bose HR (1980) Hematopoietic cell transformation by reticuloendotheliosis virus: characterization of the genetic defect. Virology 100: 462–474

    CAS  PubMed  Google Scholar 

  • Holley RW, Kieran JA (1974) Control of the initiation of DNA synthesis in 3T3 cells: serum factors. Proc Natl Acad Sci USA 71: 2908–2911

    CAS  Google Scholar 

  • Houweling A, van der Elsen PJ, van der Eb A J (1980) Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105: 537–550

    CAS  PubMed  Google Scholar 

  • Hu SSF, Moscovici C, Vogt PK (1978) The defectiveness of Mill Hill 2, a carcinoma-inducing avian oncovirus. Virology 89: 162–178

    CAS  PubMed  Google Scholar 

  • Hunter T, Cooper JA (1985) Protein-tyrosine kinases. Annu Rev Biochem 54: 897–930

    CAS  PubMed  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77: 1311–1315

    CAS  PubMed  Google Scholar 

  • Iscove NN, Schreier MH (1979) Clonal growth of cells in semisolid or viscous medium. In: Lefkovits I, Pernis B (eds) Immunological methods. Academic, New York, pp 379–385

    Google Scholar 

  • Jakobovits EB, Majors JE, Varmus HE (1984) Hormonal regulation of the Rous sarcòma virus sre gene via a heterologous promoter defines a threshold dose for cellular transformation. Cell 38: 757–765

    CAS  PubMed  Google Scholar 

  • Jansen HW, Rückert B, Lurz R, Bister K (1983) Two unrelated cell-derived sequences in the genome of avian leukemia and carcinoma-inducing retrovirus MH2. EMBO J 2: 1969–1975

    CAS  PubMed  Google Scholar 

  • Jansen HW, Lurz R, Bister K, Bonner TI, Mark GE, Rapp UR (1984) Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature 307: 281–284

    CAS  PubMed  Google Scholar 

  • Jansen HW, Patschinky T, Walther N, Lurz R, Bister K (1985) Molecular and biological properties of MH2D12, a spontaneous mil deletion mutant of avian oncovirus MH2. Virology 142: 248–262

    CAS  PubMed  Google Scholar 

  • Jansson M, Beug H, Gray C, Graf T (1987) Defective v-erbB genes can be complemented by v-erbA in erythroblast and fibroblast transformation. Oncogene 1: 167–173

    CAS  PubMed  Google Scholar 

  • Jenkins JR, Rudge K, Currie GA (1984) Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312: 651–653

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Muller D, Curran T, Muller R (1985) Extended life span and tumorigenicity of non established mouse connective tissue cells transformed by the fos oncogene of FBR-MuSV. Cell 41: 629–637

    CAS  PubMed  Google Scholar 

  • Jurdic P, Benchaibi M, Gandrillon O, Samarut J (1987) Transforming and mitogenic effects of avian leukemia virus E26 on chicken hematopoietic cells and fibroblasts, respectively, correlate with level of expression of the pro virus. J Virol 61: 3058–3065

    CAS  PubMed  Google Scholar 

  • Kahn P, Nakamura K, Shin S, Smith RE, Weber MJ (1982) Tumorigenicity of partial transformation mutants of Rous sarcoma virus. J Virol 42: 602–611

    CAS  PubMed  Google Scholar 

  • Kahn P, Adkins B, Beug H, Graf T (1984) src- and fps-containing avian sarcoma viruses transform chicken erythroid cells. Proc Natl Acad Sci USA 81: 7122–7126

    CAS  PubMed  Google Scholar 

  • Kahn P, Frykberg L, Brady C, Stanley I, Beuge H, Vennstròm B, Graf T (1986a) v-erbA cooperates with sarcoma oncogenes in leukemic cell transformation. Cell 45: 349–356

    CAS  Google Scholar 

  • Kahn P, Leutz A, Graf T (1986b) Individual and combined effects of viral oncogenes in hematopoietic cells. In: Kahn P, Graf T (eds) Oncogenes and growth control. Springer, Berlin Heidelberg New York, pp 313–319

    Google Scholar 

  • Kan NC, Flordellis CS, Garon CF, Duesberg PH, Papas TS (1983) Avian carcinoma virus MH2 contains a transformation-specific sequence, mht, and shares the myc sequence with MC29, CMII, and OKIO viruses. Proc Natl Acad Sci USA 80: 6566–6570

    Google Scholar 

  • Kan NC, Flordellis CS, Mark GE, Duesberg PH, Papas TS (1984) Nucleotide sequence of avian carcinoma virus MH2: two potential one genes, one related to avian virus MC29 and the other related to murine sarcoma virus 3611. Proc Natl Acad Sci USA 81: 3000–3004

    CAS  PubMed  Google Scholar 

  • Kanter MR, Smith RE, Hayward WS (1988) Rapid induction of B-cell lymphomas: insertional activation of c-myb by avian leukosis virus. J Virol 62: 1423–1432

    CAS  PubMed  Google Scholar 

  • Kawai S, Yoshida M, Segawa K, Sugiyama H, Ishizaki R, Toyoshima K (1980) Characterization of Y73, an avian sarcoma virus: a unique transforming gene and its product, a phosphopoly-protein with protein kinase activity. Proc Natl Acad Sci USA 77: 6199–6203

    CAS  PubMed  Google Scholar 

  • Kelekar A, Cole MD (1987) Immortalization by c-myc, FL-ras, and Eia oncogenes induces differential cellular gene expression and growth factor responses. Mol Cell Biol 7: 3899–3907

    Google Scholar 

  • Klempnauer K-H, Sippel AE (1986) Subnuclear localization of proteins encoded by the oncogene v-myb and its cellular homolog c-myb. Mol Cell Biol 6: 62–69

    CAS  PubMed  Google Scholar 

  • Klempnauer K-H, Gonda TJ, Bishop JM (1982) Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell 31: 453–463

    CAS  PubMed  Google Scholar 

  • Klempnauer K-H, Symonds G, Evan GI, Bishop JM (1984) Subcellular localization of proteins encoded by oncogenes of avian myeloblastosis virus and avian leukemia virus E26 and by the chicken c-myb gene. Cell 37: 537–547

    CAS  PubMed  Google Scholar 

  • Kmiecik TE, Shalloway D (1987) Activation and suppression of pp60c -src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49: 65–73

    CAS  PubMed  Google Scholar 

  • Kris RM, Lax I, Gullick W, Waterfield MD, Ullrich A, Fridkin M, Schlessinger J (1985) Antibodies against a synthetic peptide as a probe for the kinase activity of the avian EGF- receptor and v-erbB proteins. Cell 40: 619–625

    CAS  PubMed  Google Scholar 

  • Krust A, Green S, Argos P, Kumar V, Walter P, Bornert J-M, Chambon P (1986) The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. EMBO J 5: 891–897

    CAS  PubMed  Google Scholar 

  • Land H (1986) Oncogenes cooperate, but how? In: Kahn P, Graf T (eds) Oncogenes and growth control. Springer, Berlin Heidelberg New York, pp 304–311

    Google Scholar 

  • Land H, Parada LF, Weinberg RA (1983 a) Tumorigenic conversion of primary rat embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602.

    CAS  Google Scholar 

  • Land H, Parada LF, Weinberg (1983 b) Cellular oncogenes and multistep carcinogenesis. Science 222: 771–778

    CAS  Google Scholar 

  • Land H, Chen AC, Morgenstern JP, Parada LF, Weinberg RA (1986) Behavior of myc and ras oncogenes in transformation of rat embryo fibroblasts. Mol Cell Biol 6: 1917–1925

    CAS  PubMed  Google Scholar 

  • Lax I, Kris R, Sasson I, Ullrich A, Hayman MJ, Beug H, Schlessinger J (1985) Activation of c-erbB in avian leukosis virus-induced erythroblastosis leads to the expression of a truncated EGF receptor kinase. EMBO J 4: 3179–3182

    CAS  PubMed  Google Scholar 

  • Lax I, Johnson A, Howk R, Sap J, Bellot F, Winkler M, Ullrich A, Vennstrom B, Schlessinger J, Givol D (1988) Chicken epidermal growth factor (EGF) receptor: cDNA cloning, expression in mouse cells, and differential binding of EGF and transforming growth factor alpha. Mol Cell Biol 8: 1970–1978

    CAS  PubMed  Google Scholar 

  • Lee WMF, Schwab M, Westaway D, Varmus HE (1985) Augmented expression of normal c-myc is sufficient for cotransformation of rat embryo cells with a mutant ras gene. Mol Cell Biol 5: 3345–3356

    CAS  PubMed  Google Scholar 

  • Leprince D, Gegonne A, Coll J, de Taisne C, Schneeberger A, Lagrou C, Stehelin D (1983) A putative second cell-derived oncogene of the avian leukemia virus E26. Nature 306: 395–397

    CAS  Google Scholar 

  • Leutz A, Beug H, Graf T (1984) Purification and characterization of cMGF, a novel chicken myelomonocytic growth factor. EMBO J 3: 3191–3197

    CAS  PubMed  Google Scholar 

  • Leutz A, Damm K, Sterneck E, Kowenz E, Ness S, Frank R, Gausepohl H, Pan Y-CE, Smart J, Hayman M, Graf T (1989) Molecular cloning of the chicken myelomoncytic growth factor (cMGF) reveals relationship to interleukin 6 and granulocyte colony stimulating factor. EMBO J 8: 175–181

    CAS  PubMed  Google Scholar 

  • Levinson AD, Opperman H, Levintow L, Varmus HE, Bishop JM (1978) Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15: 561–572

    CAS  PubMed  Google Scholar 

  • Levinson AD, Opperman H, Varmus HE, Bishop JM (1980) The purified product of the transforming gene of avian sarcoma virus phosphorylates tyrosine. J Biol Chem 255: 11,973–11, 980

    CAS  Google Scholar 

  • Levy LS, Gardner MB, Casey JW (1984) Isolation of a feline leukemia pro virus containing the oncogene myc from a feline lymphosarcoma. Nature 308: 853–856

    CAS  PubMed  Google Scholar 

  • Lewis RB, McClure J, Rup B, Nielsel DW, Garry RF, Hoelzer JD, Nazerian K, Bose HR Jr (1981) Avian reticuloendotheliosis virus: identification of the hematopoietic target cell for transformation. Cell 25: 421–431

    CAS  PubMed  Google Scholar 

  • Li Y, Holland CA, Hartley JW, Hopkins N (1984) Viral integration near c-myc in 10-20% of mcf 247-induced AKR lymphomas. Proc Natl Acad Sci USA 81: 6808–6811

    CAS  PubMed  Google Scholar 

  • Linial M (1982) Two retroviruses with similar transforming genes exhibit differences in transforming potential. Virology 119: 382–391

    CAS  PubMed  Google Scholar 

  • Linial M, Blair D (1982) Genetics of retroviruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. Cold Spring Harbor Laboratory, New York, pp 649–783

    Google Scholar 

  • MacAuley A, Pawson T (1988) Cooperative transforming activities of ras, myc, and src viral oncogenes in nonestablished rat adrenocortical cells. J Virol 62: 4712–4721

    CAS  PubMed  Google Scholar 

  • Macpherson I, Montagnier L (1964) Agar suspension culture for the selective assay of cells transformedby polyoma virus. Virology 53: 291–294

    Google Scholar 

  • Martin P, Henry C, Ferre F, Bechade C, Begue A, Calothy C, Debuire B, Stehelin D, Saule S (1986) Characterization of a v-rayc-containing retrovirus generated by propagation of an MH2 viral subgenomic RNA. J Virol 57: 1191–1194

    CAS  PubMed  Google Scholar 

  • Maxwell SA, Arlinghaus RB (1985) Serine kinase activity associated with Moloney murine sarcoma virus- 124-encoded p37mos. Virology 143: 321–333

    CAS  PubMed  Google Scholar 

  • Miles BD, Robinson HL (1985) High frequency transduction of c-erbB in avian leukosis virus induced erythroblastosis. J Virol 54: 295–303

    CAS  PubMed  Google Scholar 

  • Moelling KL, Owada K, Greiser-Wilkie I, Bunte T, Donner P (1982) Biochemical characterization of transformation specific proteins of acute avian leukemia and sarcoma viruses. J Cell Biochem 20: 63–69

    CAS  PubMed  Google Scholar 

  • Moelling K, Heimann B, Beimling P, Rapp UR, Sander T (1984) Serine- ancf threonine-specific protein kinase activities of purified gag-mil and gag-raf proteins. Nature 312: 558–561

    CAS  PubMed  Google Scholar 

  • Moelling K, Pfaff E, Beug H, Beimling P, Bunte T, Schaller HE, Graf T (1985) DNA-Binding activity is associated with purified myb proteins from AMV and E26 viruses and is temperature- sensitive for E26 ts mutants. Cell 40: 983–990

    CAS  PubMed  Google Scholar 

  • Moscovici C, Gazzolo L (1982) Transformation of hematopoietic cells with avian leukemia viruses. In: Klein G (ed) Advances in viral oncology, vol 1. Raven, New York, pp 83–106

    Google Scholar 

  • Moscovici C, Vogt PK (1968) Effect of genetic cellular resistance on cell transformation and virus replication in chicken hematopoietic cultures infected with avian myeloblastosis virus ( BAI/A ). Virology 35: 487–497

    Google Scholar 

  • Moscovici C, Gazzolo L, Moscovici MG (1975) Focus assay and defectiveness of avian myeloblastosis virus. Virology 68: 173–181

    CAS  PubMed  Google Scholar 

  • Moscovici C, Samarut J, Gazzalo L, Moscovici MG (1981) Myeloid and erythroid neoplastic responses to avian defective leukemia viruses in chickens and in quail. Virology 113: 765–768

    CAS  PubMed  Google Scholar 

  • Moscovici MG, Moscovici C (1983) Isolation and characterization of a temperature-sensitive mutant of avian myeloblastosis virus. Proc Natl Acad Sci USA 80: 1421–1425

    CAS  PubMed  Google Scholar 

  • Moscovici MG, Jurdic P, Samarut J, Gazzolo L, Mura CV, Moscovici C (1983) Characterization of the hemopoietic target cells for the avian leukemia virus E26. Virology 129: 65–78

    CAS  PubMed  Google Scholar 

  • Mullins JI, Brody DS, Binari RC Jr, Cotter SM (1984) Viral transduction of c-myc gene in naturally occurring feline leukemias. Nature 308: 856–858

    CAS  PubMed  Google Scholar 

  • Münoz A, Zenke M, Gehring U, Sap J, Beug H, Vennström B (1988) Characterization of the hormone binding domain of the chicken c-erbA/thyroid hormone receptor protein. EMBO J 7: 155–159

    PubMed  Google Scholar 

  • Neel BG, Hayward WS (1981) Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogenesis by promoter insertion. Cell 23: 323–334

    CAS  PubMed  Google Scholar 

  • Neil JC, Hughes D, McFarlane R, Wilkie NM, Onions DE, Lees G, Jarrett O (1984) Transduction and rearrangement of the myc gene by feline leukemia virus in naturally occurring T-cell leukemias. Nature 308: 814–820

    CAS  PubMed  Google Scholar 

  • Ness SA, Beug H, Graf T (1987) v-myb dominance over v-myc in doubly transformed chick myelo-monocytic cells. Cell 51: 41–50

    CAS  PubMed  Google Scholar 

  • Nilsen TW, Maroney PA, Goodwin RG, Rottman FM, Crittenden LB, Raines MA, Kung HJ (1985) c-erbB activation in ALV-induced erythroblastosis: novel RNA processing and promoter insertion result in expression of an amino-truncated EGF receptor. Cell 41: 719–726

    CAS  PubMed  Google Scholar 

  • Noori-Daloii MR, Swift RA, Kung HJ, Crittenden LB, Witter RL (1981) Specific integration of REV proviruses in avian bursal lymphomas. Nature 294: 574–576

    CAS  PubMed  Google Scholar 

  • Nooter K, Bentvelzen P (1976) In vitro transformation of murine erythroid cells by Rauscher leukemia virus. Cancer 1: 155–160

    Google Scholar 

  • Nunn MF, Hunter T (1989) The ets sequence is required for the induction of erythroblastosis in chickens by avian retrovirus E26. J Virol 63: 398–402

    CAS  PubMed  Google Scholar 

  • Nunn MF, Seeburg PH, Moscovici C, Duesberg PH (1983) Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature 306: 391–395

    CAS  PubMed  Google Scholar 

  • Nunn MF, Weiher H, Bullock P, Duesberg P (1984) Avian erythroblastosis virus E26: nucleotide sequence of the tripartite one gene and of the LTR, and analysis of the cellular prototype of the virals ets sequence. Virology 139: 330–339

    CAS  PubMed  Google Scholar 

  • Oliff A, Agranovsky O, McKinney MD, Murty VWS, Bauchwitz R (1985) Friend murine leukemia virus-immortalized myeloid cells are converted into tumorigenic cell lines by Abel son leukemia virus. Proc Natl Acad Sci USA 82: 3306–3310

    CAS  PubMed  Google Scholar 

  • Oshimura M, Gilmer TM, Barrett JC (1985) Nonrandom loss of chromosome 15 in Syrian hamster tumors induced by v-YLaras plus v-myc oncogenes. Nature 316: 636–639

    CAS  PubMed  Google Scholar 

  • Ostertag W, Vehmeyer K, Fagg B, Pragneil IB, Paetz W, Le Bousse MC, Smadja-Joffe F, Klein B, Jasmin C, Eisen H (1980) Myeloproliferative virus, a cloned murine sarcoma virus with spleen focus-forming properties in adult mice. J Virol 33: 573–582

    CAS  PubMed  Google Scholar 

  • Pachl C, Biegalke B, Linial M (1983a) RNA and protein encoded by MH2 virus: evidence for sub-genomic expression of v-myc. J Virol 45: 133–139

    CAS  PubMed  Google Scholar 

  • Pachl C, Schubach W, Eisenman R, Linial M (1983 b) Expression of c-myc RNA in bursal lymphoma cell lines: identification of c-rajc-encoded proteins by hybrid-selected translation. Cell 33: 335–344

    Google Scholar 

  • Pacifici M, Boettiger D, Roby K, Holtzer H (1977) Transformation of chondroblasts by Rous sarcoma virus and synthesis of the sulfated proteoglycan matrix. Cell 11: 891–899

    CAS  PubMed  Google Scholar 

  • Palmieri S (1985) Transformation of erythroid cells by Rous sarcoma virus (RSV). Virology 140: 269–280

    CAS  PubMed  Google Scholar 

  • Palmieri S (1986) Isolation of an MH2 retrovirus mutant temperature sensitive for macrophage but not fibroblast transformation. J Virol 58: 134–141

    CAS  PubMed  Google Scholar 

  • Palmieri S, Vogel ML (1987) Fibroblast transformation parameters induced by the avian v-mil oncogene. J Virol 61: 1717–1721

    CAS  PubMed  Google Scholar 

  • Palmieri S, Beug H, Graf T (1982) Isolation and characterization of four new temperature-sensitive mutants of avian erythroblastosis virus ( AEV ). Virology 123: 296–311

    Google Scholar 

  • Palmieri S, Kahn P, Graf T (1983) Quail embryo fibroblasts transformed by four-mjocontaining virus isolates show enhanced proliferation but are nontumorigenic. EMBO J 2: 2385–2389

    CAS  PubMed  Google Scholar 

  • Parada LF, Land H, Weinberg RA, Wolf D, Rotter V (1984) Cooperation between gene encoding p53 tumor antigen and ras in cellular transformation. Nature 312: 649–651

    CAS  PubMed  Google Scholar 

  • Parker RC, Varmus HE, Bishop JM (1984) Expression of v-src and chicken c-src in rat cells demonstrates qualitative differences between pp60v-src and pp60c-src. Cell 37: 131–139

    CAS  PubMed  Google Scholar 

  • Pawson T, Guyden J, Kung T-H, Radke K, Gilmore T, Martin GS (1980) A strain of Fujiami sarcoma virus which is temperature-sensitive in protein phosphorylation and cellular transformation. Cell 22: 767–775

    CAS  PubMed  Google Scholar 

  • Payne GS, Courtneidge SA, Crittenden LB, Fadly AM, Bishop JM, Varmus HE (1981) Analysis of avian leukosis virus DNA and RNA in bursal tumors: viral gene expression is not required for maintenance of the tumor state. Cell 23: 311–322

    CAS  PubMed  Google Scholar 

  • Payne GS, Bishop JM, Varmus HE (1982) Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295: 209–214

    CAS  PubMed  Google Scholar 

  • Pelley RJ, Moscovici C, Hughes S, Kung H-J (1988) Pro viral-activated c-erbB is leukemogenic but not sarcomagenic: characterization of a replication-competent retrovirus containing the activated c-erbB. J Virol 62: 1840–1844

    CAS  PubMed  Google Scholar 

  • Pessac B, Calothy G (1974) Transformation of chick embryo neuroretinal cells by Rous sarcoma virus in vitro: induction of cell proliferation. Science 185: 709–710

    CAS  PubMed  Google Scholar 

  • Pessac B, Girard A, Romey G, Crisanti P, Lorinet A-M, Calothy G (1983) A neuronal clone derived from a Rous sarcoma virus-transformed quail embryo neuroretina established culture. Nature 302: 616–618

    CAS  PubMed  Google Scholar 

  • Pessano S, Gazzolo L, Moscivici C (1979) The effect of a tumor promoter on avian leukemic cells. Microbiologica 2: 379–392

    Google Scholar 

  • Petkovich M, Brand NJ, Krust A, Chambon P (1987) A human retinoic acid receptor which belongs to the family of nuclear proteins. Nature 330: 444–450

    CAS  PubMed  Google Scholar 

  • Pierce JH, Aaronson SA, Anderson SM (1984) Hematopoietic cell transformation by a murine recombinant retrovirus containing the src gene of Rous sarcoma virus. Proc Natl Acad Sci USA 81: 2374–2378

    CAS  PubMed  Google Scholar 

  • Pierce JH, Di Fiore PP, Aaronson SA, Potter M, Pumphrey J, Scott A, Ihle JN (1985) Neoplastic transformation of mast cells by Abelson-Mu LV: abrogation of IL-3 dependence by a nonautocrine mechanism. Cell 41: 685–693

    CAS  PubMed  Google Scholar 

  • Piwnica-Worms H, Saunders KB, Roberts TM, Smith AE, Cheng SH (1987) Tyrosine phosphorylation regulates the biochemical and biological properties of pp60c -src. Cell 49: 75–82

    CAS  PubMed  Google Scholar 

  • Ponten J (1964) The in vivo growth mechanism of avian Rous sarcoma. NCI Monogr 17: 131–145

    Google Scholar 

  • Privalsky ML (1987) Creation of a chimeric oncogene: analysis of the biochemical and biological properties of a v-erbB/src fusion polypeptide. J Virol 61: 1938–1948

    CAS  PubMed  Google Scholar 

  • Privalsky ML, Bishop JM (1984) Subcellular localization of the v-erb-B protein, the product of a transforming gene of avian erythroblastosis virus. Virology 135: 356–368

    CAS  PubMed  Google Scholar 

  • Privalsky ML, Sealy L, Bishop JM, McGrath JP, Levinson AD (1983) The product of the avian erythroblastosis virus erbB locus is a glycoprotein. Cell 32: 1257–1267

    CAS  PubMed  Google Scholar 

  • Privalsky ML, Ralston R, Bishop JM (1984) The membrane glycoprotein encoded by the retroviral oncogene v-erbB is structurally related to tyrosine-speciflc protein kinases. Proc Natl Acad Sci USA 81: 704–707

    CAS  PubMed  Google Scholar 

  • Privalsky,ML, Boucher P, Koning A, Judelson C (1988) Genetic dissection of functional domains within the avian erythroblastosis virus erbA oncogene. Mol Cell Biol 8: 4510–517

    CAS  PubMed  Google Scholar 

  • Radke K, Beug H, Kornfeld S, Graf T (1982) Transformation of both erythroid and myeloid cells by E26, an avian leukemia virus that contains the myb gene. Cell 31: 643–653

    CAS  PubMed  Google Scholar 

  • Raines MA, Wynne WG, Crittenden LB, Kung H-J (1985) c-erbB activation in avian leukosis virus-induced erythroblastosis: clustered integration sites and the arrangement of provirus in the c-erbB alleles. Proc Natl Acad Sci USA 82: 2287–2291

    CAS  PubMed  Google Scholar 

  • Raines MA, Maihle NJ, Moscovici C, Crittenden L, Kung H-J (1988a) Mechanism of c-erbB transduction: newly released transducing viruses retain poly(A) tracts of erbB transcripts and encode C-terminally intact erbB proteins. J Virol 62: 2437–2443

    CAS  PubMed  Google Scholar 

  • Raines MA, Maihle NJ, Moscovici C, Moscovici MG, Kung H-J (1988 b) Molecular characterization of three erbB transducing viruses generated during avian leukosis virus-induced erythroleukemia: extensive internal deletion near the kinase domain activates the fibrosarcoma- and hemangioma- inducing potentials of erbB. J Virol 62: 2444–2452

    CAS  Google Scholar 

  • Ramsay GM, Hayman MJ (1982) Isolation and biochemical characterization of partially transformation-defective mutants of avian myelocytomatosis virus strain MC29: localization of the mutation to the myc domain of the 110,000-dalton gag-myc polyprotein. J Virol 41: 745–753

    CAS  PubMed  Google Scholar 

  • Ramsay GM, Graf T, Hayman MJ (1980) Mutants of avian myelocytomatosis virus with smaller gag gene-related proteins have an altered transforming ability. Nature 288: 170–172

    CAS  PubMed  Google Scholar 

  • Ramsay GM, Enrietto PJ, Graf T, Hayman MJ (1982a) Recovery of myc-specific sequences by a partially transformation-defective mutant of avian myelocytomatosis virus MC29, correlates with the restoration of transforming activity. Proc Natl Acad Sci USA 79: 6885–6889

    CAS  PubMed  Google Scholar 

  • Ramsay GM, Hayman MJ, Bister K (1982 b) Phosphorylation of specific sites in the gag-myc polyproteins encoded by MC29-type viruses correlates with their transforming ability. EMBO J 1: 1111–1116

    CAS  Google Scholar 

  • Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds FH Jr, Stephenson JR (1983) Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci 80: 4218–4222

    CAS  PubMed  Google Scholar 

  • Rapp UR, Cleveland JL, Brightman K, Scott A, Ihle JN (1985 a) Abrogation of IL-3 and IL-2 dependence by recombinant murine retroviruses expressing v-myc oncogenes. Nature 317: 434–438

    CAS  Google Scholar 

  • Rapp UR, Cleveland JL, Frederickson TN, Holmes KL, Morse HC III, Jansen HW, Patschinsky T, Bister K (1985 b) Rapid induction of hemopoietic neoplasms in newborn mice by a raf (mil) myc recombinant murine retrovirus. J Virol 55: 23–33

    CAS  Google Scholar 

  • Rassoulzadegan M, Cowie A, Carr A, Glaichenhaus N, Kamen R, Cuzin F (1982) The roles of individual polyoma virus early proteins in oncogenic transformation. Nature 300: 713–718

    CAS  PubMed  Google Scholar 

  • Rassoulzadegan M, Naghashfar Z, Cowie A, Carr A, Grisoni M, Kamen R, Cuzin F (1983) Expression of the large T protein of polyoma virus promotes the establishment in culture of “normal” fibroblast cell lines. Proc Natl Acad Sci USA 80: 4354–4358

    CAS  PubMed  Google Scholar 

  • Reicin A, Yang J-Q, Marcu KB, Fleissner E, Koehne CF, O’Donnell PV (1986) Deregulation of the c-myc oncogene in virus-induced thymic lymphomas of AKR/J mice. Mol Cell Biol 6: 4088–4092

    CAS  PubMed  Google Scholar 

  • Reidel H, Schlessinger J, Ullrich A (1987) A chimeric, ligand-binding v-erbB/EGF receptor retains transforming potential. Science 236: 197–200

    Google Scholar 

  • Rein A, Keller J, Schultz AM, Holmes KL, Medicus R, Ihle JN (1985) Infection of immune mast cells by Harvey sarcoma virus: immortalization without loss of requirement for interleukin-3. Mol Cell Biol 5: 2257–2264

    CAS  PubMed  Google Scholar 

  • Reynolds AB, Vila J, Lansing TJ, Potts WM, Weber MJ, Parsons JT (1987) Activation of the oncogenic potential of the avian cellular sre protein by specific structural alteration of the carboxy terminus. EMBO J 6: 2359–2364

    CAS  PubMed  Google Scholar 

  • Robinson HL, Gagnon GC (1986) Patterns of proviral insertion and deletion in avian leucosis virus induced lymphomas. J Virol 57: 28–36

    CAS  PubMed  Google Scholar 

  • Robinson HL, Miles BD, Catalano DE, Briles WE, Crittenden LB (1985) Susceptibility to erbB-induced erythroblastosis is a dominant trait of 15i chickens. J Virol 55: 617–622

    CAS  PubMed  Google Scholar 

  • Rosenberg N, Baltimore D (1976) A quantitative assay for transformation of bone marrow cells by Abelson murine leukemia virus. J Exp Med 143: 1453–1463

    CAS  PubMed  Google Scholar 

  • Roussel M, Säule S, Lagrou C, Rommens C, Beug H, Graf T, Stehelin D (1979) Three new types of viral oncogene of cellular origin specific for hematopoietic cell transformation. “Nature” 281: 452–455

    CAS  Google Scholar 

  • Royer-Pokora B, Beug H, Claviez M, Winkhardt H-J, Friis RR, Graf T (1978) Transformation parameters in chicken fibroblasts transformed by AEV and MC29 avian leukemia viruses. Cell 13: 751–760

    CAS  PubMed  Google Scholar 

  • Ruley HE (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606

    CAS  PubMed  Google Scholar 

  • Ruley HE, Moomaw JF, Maruyama K (1984) Avian myelocytomatosis virus myc and adenovirus early region 1A promote the in vitro establishment of primary cultured cells. Cold Spring Harbor Press Cancer Cells 2: 481–486

    CAS  Google Scholar 

  • Rushlow KE, Lautenberger JA, Papas TS, Baluda MA, Perbal B, Chirikjian JG, Reddy EP (1982) Nucleotide sequence of the transforming gene of avian myeloblastosis virus. Science 216: 1421–1423

    CAS  PubMed  Google Scholar 

  • Samarut J, Bouabdelli M (1980) In vitro development of CFU-E and BFU-E in cultures of embryonic and postembryonic chicken hematopoietic cells. J Cell Physiol 105: 553–563

    CAS  PubMed  Google Scholar 

  • Samarut J, Gazzolo L (1982) Target cells infected by avian erythroblastosis virus differentiate and become transformed. Cell 28: 921–929

    CAS  PubMed  Google Scholar 

  • Sap J, Münoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennström B (1986) The c-erb- A protein is a high-affinity receptor for thyroid hormone. Nature 324: 635–640

    CAS  PubMed  Google Scholar 

  • Saule S, Coll J, Righi M, Lagrou C, Raes MB, Stehelin D (1983) Two different types of transcription for the myelocytomatosis viruses MH2 and CMII. EMBO J 2: 805–809

    CAS  PubMed  Google Scholar 

  • Schatzman RC, Evan GI, Privalsky ML, Bishop JM (1986) Orientation of the v-erbB gene product in the plasma membrane. Mol Cell Biol 6: 1329–1333

    CAS  PubMed  Google Scholar 

  • Scher CD, Scolnick EM, Siegler R (1975) Induction of erythroid leukemia by Harvey and Kirsten sarcoma viruses. Nature 256: 225–227

    CAS  PubMed  Google Scholar 

  • Schwab M, Varmus HE, Bishop JM (1985) Human N-myc gene contributes to neoplastic transformation of mammalian cells in culture. Nature 316: 160–162

    CAS  PubMed  Google Scholar 

  • Schwartz RC, Stanton LW, Marcu KB, Witte ON (1986 a) An in vitro model for tumor progression in murine lymphoid cells. Curr Top Microbiol Immunol 132: 75–79

    CAS  Google Scholar 

  • Schwartz RC, Stanton LW, Riley SC, Marcu KB, Witte ON (1986 b) Synergism of v-myc and v-Haras in the in vitro neoplastic progression of murine lymphoid cells. Mol Cell Biol 6: 3221–3231

    CAS  Google Scholar 

  • Scolnick EM, Papageorge AG, Shih TY (1979) Guanine nucleotide-binding activity as an assay for src protein or rat-derived murine sarcoma viruses. Proc Natl Acad Sci USA 76: 5355–5359

    CAS  PubMed  Google Scholar 

  • Scotting P, Vennström B, Jansson M, Graf T, Beug H, Hayman MJ (1987) Common site of mutation in the erbB gene of avian erythroblastosis virus mutants that are temperature sensitive for transformation. Oncogene Res 1: 265–278

    CAS  PubMed  Google Scholar 

  • Sealy L, Moscovici G, Moscovici C, Bishop JM (1983 a) Site-specific mutagenesis of avian erythroblastosis virus: v-erbA is not required for transformation of fibroblasts. Virology 130: 179–194

    CAS  Google Scholar 

  • Sealy L, Privalsky ML, Moscovici G, Moscovici C, Bishop JM (1983b) Site-specific mutagenesis of avian erythroblastosis virus: erbB is required for oncogenicity. Virology 130: 155–178

    CAS  Google Scholar 

  • Selten G, Cuypers HT, Zulstra M, Melief C, Berns A (1984) Involvement of c-myc in Mu LV- induced T cell lymphomas in mice: frequency and mechanisms of activation. EMBO J 3: 3215–3222

    CAS  PubMed  Google Scholar 

  • Shalloway D, Johnson PJ, Freed EO, Coulter D, Flood WA (1987) Transformation of NIH 3T3 cells by cotransfection with c-src and nuclear oncogenes. Mol Cell Biol 7: 3582–3590

    CAS  PubMed  Google Scholar 

  • Sheiness D, Bister K, Moscovici C, Fanshier L, Gonda T, Bishop JM (1980) Avian retroviruses that cause carcinoma and leukemia: identification of nucleotide sequences associated with pathogenicity. J Virol 33: 962–968

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER (1985) The c-fins proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CFS-1. Cell 41: 665–676

    CAS  PubMed  Google Scholar 

  • Shih TY, Papageorge AG, Stokes PE, Weeks MO, Scolnick EM (1980) Guanine nucleotide- binding and autophosphorylating activities associated with the p21 ras protein of Harvey murine sarcoma virus. Nature 287: 686–691

    CAS  PubMed  Google Scholar 

  • Singh B, Hannink M, Donoghue DJ, Arlinghaus RB (1986) p37wo5-associated serine/threonine protein kinase activity correlates with the cellular transformation function of v-mos. J Virol 60: 1148–1152

    CAS  PubMed  Google Scholar 

  • Sotirov N (1981) Histone H5 in the immature blood cells of chickens with leukosis induced by avian leukosis virus strain E26. J NCI 66: 1143–1150

    CAS  Google Scholar 

  • Spandidos DA, Wilkie NM (1984) Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature 310: 469–475

    CAS  PubMed  Google Scholar 

  • Spooncer E, Boettiger D, Dexter TM (1984) Continuous in vitro generation of multipotential stem cell clones from src-infected cultures. Nature 310: 228–230

    CAS  PubMed  Google Scholar 

  • Sporn MB, Roberts AB (1985) Autocrine growth factors and cancer. Nature 313: 745–747

    CAS  PubMed  Google Scholar 

  • Steffen D (1984) Proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas. Proc Natl Acad Sci USA 81: 2097–2101

    CAS  PubMed  Google Scholar 

  • Stern DF, Roberts AB, Roche NS, Sporn MB, Weinberg RA (1986) Differential responsiveness of myc- and ros-transfected cells to growth factors: selective stimulation of rayotransfected cells by epidermal growth factor. Mol Cell Biol 6: 870–877

    CAS  PubMed  Google Scholar 

  • Sutrave P, Bonner TI, Rapp UR, Jansen HW, Patschinsky T, Bister K (1984) Nucleotide sequence of avian retroviral oncogene v-mil: homologue of murine retroviral oncogene v-raf. Nature 309: 85–88

    CAS  PubMed  Google Scholar 

  • Symonds G, Klempnauer K-H, Evan GI, Bishop JM (1984) Induced differentiation of avian myeloblastosis virus-transformed myeloblasts: phenotypic alteration without altered expression of the viral oncogene. Mol Cell Biol 4: 2587–2593

    CAS  PubMed  Google Scholar 

  • Symonds G, Klempnauer K-H, Snyder M, Moscovici G, Moscovici C, Bishop JM (1986) Coordinate regulation of myelomonocytic phenotype by v-myb and v-myc. Mol Cell Biol 6: 1796–1802

    CAS  PubMed  Google Scholar 

  • Temin HM, Rubin H (1958) Characteristics of an assay for Rous sarcoma virus and Rous sarcoma cells in tissue culture. Virology 6: 669–688

    CAS  PubMed  Google Scholar 

  • Till JE, McCulloch E (1980) Hemopoietic stem cell differentiation. Biochim Biophys Acta 605: 431–459

    CAS  PubMed  Google Scholar 

  • Tracy SE, Woda BA, Robinson HL (1985) Introduction of angiosarcoma by a c-erbB transducing virus. J Virol 54: 304–310

    CAS  PubMed  Google Scholar 

  • Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, Downward J, Mayes ELV, Whittle N, Waterfield MD, Seeburg PH (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309: 418–425

    CAS  PubMed  Google Scholar 

  • Ushiro H, Cohen S (1980) Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem 255: 8363–8365

    CAS  PubMed  Google Scholar 

  • Varmus HE (1982) Form and function of retroviral proviruses. Science 216: 812–820

    CAS  PubMed  Google Scholar 

  • Varmus H, Swanstrom R (1982) Replication of retroviruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. Cold Spring Harbor Laboratory, New York, pp 369–512

    Google Scholar 

  • Vennström B, Bishop JM (1982) Isolation and characterisation of chicken DNA homologous to the two putative oncogenes of avian erythroblastosis virus. Cell 28: 135–143

    PubMed  Google Scholar 

  • Vennström B, Bravo R (1987) Anchorage-independent growth of v-myc-transformed Balb/c3T3 cells is promoted by platelet-derived growth factor or co-transformation by other oncogenes. Oncogene 1: 271–276

    PubMed  Google Scholar 

  • Vennström B, Kahn P, Adkins B, Enrietto P, Hayman MJ, Graf T, Luciw P (1984) Transformation of mammalian fibroblasts and macrophages in vitro by a murine retrovirus encoding an avian v-myc oncogene. EMBO J 3: 3223–3229

    PubMed  Google Scholar 

  • Vogt M, Lesley J, Bogenberger J, Volkman S, Haas M (1986) Coinfection with viruses carrying the v-Ha-ras and v-myc oncogenes leads to growth factor independence by an indirect mechanism. Mol Cell Biol 6: 3545–3549

    CAS  PubMed  Google Scholar 

  • Vogt PK (1969) Focus assay of Rous sarcoma virus. In: Habel K, Salzman NP (eds) Fundamental techniques in virology. Academic, New York, pp 198–211

    Google Scholar 

  • Vogt PK (1977) Genetics of RNA tumor viruses. Compr Virol 9: 341–430

    CAS  Google Scholar 

  • von Weizsäcker F, Beug H, Graf T (1986) Temperature-sensitive mutants of MH2 avian leukemia virus that map in the v-mil and the v-myc oncogene respectively. EMBO J 5: 1521–1528

    Google Scholar 

  • Waneck GL, Rosenberg N (1981) Abelson leukemia virus induces lymphoid and erythroid colonies in infected fetal cell cultures. Cell 26: 79–89

    CAS  PubMed  Google Scholar 

  • Waneck GL, Keyes L, Rosenberg N (1986) Abelson virus drives the differentiation of Harvey virus-infected erythroid cells. Cell 44: 337–344

    CAS  PubMed  Google Scholar 

  • Weinberg RA (1982) Oncogenes of spontaneous and chemically induced tumors. Adv Cancer Res 36: 149–163

    CAS  PubMed  Google Scholar 

  • Weinberg RA (1985) The action of oncogenes in the cytoplasm and nucleus. Science 230: 770–776

    CAS  PubMed  Google Scholar 

  • Weinberger C, Hollenberg SM, Rosenfeld MG, Evans RM (1985) Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature 318: 670–672

    CAS  PubMed  Google Scholar 

  • Weinberger C, Thompson CC, Ong ES, Lebo R, Graol DJ, Evans RM (1986) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324: 641–646

    CAS  PubMed  Google Scholar 

  • Whitlock CA, Witte ON (1982) Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci USA 79: 3608–3612

    CAS  PubMed  Google Scholar 

  • Wigler M, Sweet R, Sim GK, Wold B, Pellicer A, Lacy E, Maniatis T, Silverstein S, Axel R (1979) Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell 16: 777–785

    CAS  PubMed  Google Scholar 

  • Winqvist R, Saksela K, Alitalo K (1984) The myc proteins are not associated with chromatin in mitotic cells. EMBO J 3: 2947–2950

    CAS  PubMed  Google Scholar 

  • Witte ON, Dasgupta A, Baltimore D (1980) Abelson murine leukemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature 283: 826–831

    CAS  PubMed  Google Scholar 

  • Woods CM, Boyer B, Vogt PK, Lazarides E (1986) Control of erythroid differentiation: asynchronous expression of the anion transporter and the peripheral components of the membrane skeleton in AEV- and SB-transformed cells. J Cell Biol 103: 1789–1798

    CAS  PubMed  Google Scholar 

  • Yamamoto KR (1985) Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet 19: 209–252

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Hihara H, Nishida T, Kawai S, Toyoshima K (1983a) A new avian erythroblastosis virus, AEV-H, carries erbB gene responsible for the induction of both erythroblastosis and sacomas. Cell 34: 225–234

    CAS  Google Scholar 

  • Yamamoto T, Nishida T, Miyajima N, Kawai S, Ooi T, Toyoshima K (1983 b) The erbB gene of avian erythroblastosis virus is a member of the src gene family. Cell 35: 71–78

    CAS  Google Scholar 

  • Yancopoulos GD, Nisen PD, Tesfaye A, Kohl NE, Goldfarb MP, Alt FW (1985) N-myc can cooperate with ras to transform normal cells in culture. Proc Natl Acad Sci USA 82: 5455–5459

    CAS  PubMed  Google Scholar 

  • Zenke M, Kahn P, Disela C, Vennstrom B, Leutz A, Keegan K, Hayman MJ, Choi H-R, Yew N, Engel JD, Beug H (1988) v-erbA specifically suppresses transcription of the avian erythrocyte anion transporter (Band 3) gene. Cell 52: 107–119

    CAS  PubMed  Google Scholar 

  • Zhou R-P, Kan N, Papas T, Duesberg P (1985) Mutagenesis of avian carcinoma virus MH2: only one of two potential transforming genes (delta-gag-myc) transforms fibroblasts. Proc Natl Acad Sci USA 82: 6389–6393

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Palmieri, S. (1989). Oncogene Requirements for Tumorigenicity: Cooperative Effects between Retroviral Oncogenes. In: Vogt, P.K. (eds) Oncogenes and Retroviruses. Current Topics in Microbiology and Immunology, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74700-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74700-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74702-1

  • Online ISBN: 978-3-642-74700-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics