Skip to main content

Eukaryotic RAS Proteins and Yeast Proteins with Which They Interact

  • Conference paper
Oncogenes

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 147))

  • 51 Accesses

Abstract

Wild type Saccharomyces cerevisiae cells coordinate cell division with the availability of essential nutrients. In rich media, cells divide continuously. If the medium is moderately limited for some nutrients required for growth and division, cells grow slowly, requiring more time for each cell cycle. The increase in cell cycle time is due to a preferential increase in the time required to traverse the G1 phase of the cell cycle Johnston et al. 1977). If the medium is severely limited for nutrients, haploid cells arrest in G1 in an altered physiologic state. In this altered state, the cells are resistant to heat shock and can survive long periods of nutrient deprivation (Pringle and Hartwell 1981). Diploid cells severely limited for nutrients can arrest in G1 and sporulate (Esposito and Klapholz 1981). These data suggest that nutritional information may influence the nature of events in G1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbicid M (1987) RAS gene. Annu Rev Biochem 56: 779–828

    Article  Google Scholar 

  • Birchmeier C, Broek D, Wigler M (1985) RAS proteins can induce meiosis in Xenopus oocytes. Cell 43:615–621

    Article  PubMed  CAS  Google Scholar 

  • Boutelet F, Petitjean A, Hilger F (1985) Yeast CDC35 mutants are defective in adenylate cyclase and are alleleic with CYR1 mutants while CAS1, a new gene, is involved in the regulation of adenylate cyclase. EMBO J 4: 2635–2642

    PubMed  CAS  Google Scholar 

  • Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M (1985) Differential activation of yeast adenylate cyclase by wild-type and mutant ras proteins. Cell 41: 763–769

    Article  PubMed  CAS  Google Scholar 

  • Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M, Powers S, and Wigler M (1987) The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48: 789–799

    Article  PubMed  CAS  Google Scholar 

  • Camonis JH, Kalikine M, Bernard G, Garreau H, Boy-Marcotte E, Jacquet M (1986) Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. EMBO J 5: 375–380

    PubMed  CAS  Google Scholar 

  • Cannon J, Tatchell K (1987) Characterization of the Saccharomyces cerevisiae gene encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 7: 2653–2663

    PubMed  CAS  Google Scholar 

  • Cannon JF, Gibbs JB, Tatchell K (1986) Suppressors of the ras2 mutations of S. cerevisiae. Genetics 113: 247–264

    PubMed  CAS  Google Scholar 

  • Casperson G, Walker N, Brasier A, Bourne H (1983) A guanine nucleotide-sensitive adenylate cyclase in the yeast Saccharomyces cerevisiae. J Biol Chem 258: 7911–7914

    PubMed  CAS  Google Scholar 

  • Casperson G, Walker N, Bourne H (1985) Isolation of the gene encoding adenylate cyclase in the yeast Saccharomyces cereviciae. Proc Natl Acad Sci USA 82: 5060–5063

    Article  PubMed  CAS  Google Scholar 

  • Daniel J, Becker J, Enari E, Levitzki A (1987) The activation of adenylate cyclase by guanyl nucleotides in Saccharomyces cerevisiae is controlled by the CDC25 start gene product. Mol Cell Biol 7: 3857–3861

    PubMed  CAS  Google Scholar 

  • DeFeo-Jones D, Scolnick EM, Zoller R, Dhar R (1983) ras-related gene sequences identified and isolated from Saccharomyces cerevisiae. Nature 306: 707–709

    Article  PubMed  CAS  Google Scholar 

  • DeFeo-Jones D, Tatchell K, Robinson LC, Sigai I, Vass W, Lowy DR, Scolnick EM (1985) Mammalian and yeast ras gene products: biological function in their heterologous systems. Science 228: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Deschenes RJ, Broach JR (1987) Fatty acylation is important but not essential for Saccharomyces cerevisiae RAS function. Mol Cell Biol 7: 2344–2351

    PubMed  CAS  Google Scholar 

  • Esposito RE, Klapholz S (1981) Meiosis and ascospore development. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: Life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 211–287

    Google Scholar 

  • Field J, Broek D, Kataoka T, Wigler M (1987) Guanine nucleotide activation of, and competition between, RAS proteins from Saccharomyces cerevisiae. Mol Cell Biol 7: 2128–2133

    PubMed  CAS  Google Scholar 

  • Gibbs JB, Sigal IS, Poe M, Scolnick EM (1984) Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci USA 81: 5704–5708

    Article  PubMed  CAS  Google Scholar 

  • Gibbs JB, Schaber MD, Marshall MS, Scolnick EM, Sigal IS (1987) Identification of guanine nucleotides bound to ras-encoded proteins in growing yeast cells. J Biol Chem 262: 10426–10429

    PubMed  CAS  Google Scholar 

  • Gilman A (1987) G proteins: transducers of receptor-generated signals. Annu Rev Bioch 56: 615–649

    Article  CAS  Google Scholar 

  • Hartwell LH (1974) Saccharomyces cerevisiae cell cycle. Bacteriol Rev 38: 164–198

    PubMed  CAS  Google Scholar 

  • Hixson CS, Krebs EG (1980) Characterization of a cyclic AMP-binding protein from baker’s yeast. Identification as a regulatory subunit of cyclic AMP dependent protein kinase. J Biol Chem 225:2137–2145

    Google Scholar 

  • Iida H, Yahara I (1984) A heat shock resistant mutant of Saccharomyces cerevisiae shows constitutive synthesis of two heat shock proteins and altered growth. J Cell Biol 99: 1441–1450

    Article  PubMed  CAS  Google Scholar 

  • Johnson K, Cameron S, Toda T, Wigler M, Zoller M (1987) Expression in E. coli of BCY 1, the regulatory subunit of the cAMP dependent protein kinase from Saccharomyces cerevisiae. J Biol Chem 255: 2137–2145

    Google Scholar 

  • Johnston GC, Pringle JR, Hartwell LH (1977) Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 105: 79–98

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Powers S, McGill C, Fasano O, Strathern J, Broach J, Wigler M (1984) Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37: 437–445

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, Broach H, Wigler M (1985 a) Functional homology of mammalian and yeast RAS genes. Cell 40: 19–26

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Broek D, Wigler M (1985 b) DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43: 493–505

    Article  PubMed  CAS  Google Scholar 

  • Korn L, Siebel C, McCormick F, Roth R (1987) Ras p21 as a potential mediator of insulin action in Xenopus oocytes. Science 236: 840–843

    Article  PubMed  CAS  Google Scholar 

  • Kuret J, Johnson K, Nicolette C, Zoller M (1988) Metagenesis of the regulatory subunit of yeast cAMP-dependent protein kinase. J Biol Chem 263: 9149–9151

    PubMed  CAS  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143: 1384–1394

    PubMed  CAS  Google Scholar 

  • Martegani E, Vanoni M, Baroni M (1984) Macromolecular synthesis in the cell cycle mutant cdc25 of budding yeast. Eur J Biochem 144: 205–210

    Article  PubMed  CAS  Google Scholar 

  • Martegani E, Baroni M, Wanoni M (1986a) Interaction of cAMP with the CDC25-mediated step in the cell cycle of Saccharomyces cerevisiae. Exp Cell Res 544–548

    Google Scholar 

  • Martegani E, Baroni M, Frascotti G, Alberghina L (1986 b) Molecular cloning and transcriptional analysis of the start gene CDC25 of Saccharomyces cerevisiae. EMBO J 5: 2363–2369

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Uno I, Oshima Y, Ishikawa T (1982) Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc Natl Acad Sci USA 79:2355–2359

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1983) Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase. Exp Cell Res 146: 151–161

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1984) Identification of the structural gene and nonsense allels for adenylate cyclase in Saccharomyces cerevisiae. J Bacteriol 157: 277–282

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1985) Genetic analysis of the role of cAMP in yeast. Yeast 1: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Mbonyi K, Beullens M, Detremeriek K, Geerts L, Thevelein J (1988) Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose- induced cyclic AMP signal in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8: 3051–3057

    PubMed  CAS  Google Scholar 

  • McGrath JP, Capon DJ, Goeddel DV, Levinson AD (1984) Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310: 644–649

    Article  PubMed  CAS  Google Scholar 

  • Papageorge A, Lowy DR, Scolnick EM (1982) Comparative biochemical properties of p21 ras molecules coded for viral and cellular ras genes. J Virol 44: 509–519

    PubMed  CAS  Google Scholar 

  • Powers S, Kataoka T, Fasano O, Goldfarb M, Strathern J, Broach J, Wigler M (1984) Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36:607–612

    Article  PubMed  CAS  Google Scholar 

  • Powers S, Michaelis S, Broek D, Santa Anna-A S, Field J, Herskowitz I, Wigler M (1986) RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor. Cell 47: 413–422

    Article  PubMed  CAS  Google Scholar 

  • Pringle JR, Hartwell LH (1981) The Saccharomyces cerevisiae cell cycle. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: Life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 97–142

    Google Scholar 

  • Robinson LC, Gibbs JB, Marshall MS, Sigal IS, Tatchell K (1987) CDC25: A component of the RAS-adenylate cyclase pathways in Saccharomyces cerevisiae. Science 235: 1218–1221

    Article  PubMed  CAS  Google Scholar 

  • Shilo V, Simchen G, Shilo B (1978) Initiation of meiosis in cell cycle initiation mutants of Saccharomyces cerevisiae. Exp Cell Res 112: 241–249

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Goldfarb M, Suard Y, Perucho M, Li Y, Kamata T, Feramisco J, Stavnezer E, Fogh J, Wigler M (1983) Three human transforming genes are related to the viral ras oncogenes. Proc Natl Acad Sci USA 80: 2112–2116

    Article  PubMed  CAS  Google Scholar 

  • Shin D-Y, Uno I, Ishikawa T (1987) Control of the G1-G0 transition and G0 protein synthesis by cyclic AMP in Saccharomyces cerevisiae. Curr Genet 12: 577–582

    Article  PubMed  CAS  Google Scholar 

  • Sigal IS, Gibbs JB, D’Alonzo JS, Temeles GL, Wolanski BS, Socher SH, Scolnick EM (1986a) Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects. Proc Natl Acad Sci USA 83: 952–956

    Article  PubMed  CAS  Google Scholar 

  • Sigal IS, Gibbs JB, D’Alonzo JS, Scolnick EM (1986 b) Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21. Proc Natl Acad Sci USA 83: 4725–4729

    Article  PubMed  CAS  Google Scholar 

  • Stryer L (1986) Cyclic GMP cascade of vision. Annu Rev. Neurosci 9: 87–119

    Article  PubMed  CAS  Google Scholar 

  • Sweet R, Yokoyama S, Kamata T, Feramisco J, Rosenberg M, Gross M (1984) The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature 311: 273–275

    Article  PubMed  CAS  Google Scholar 

  • Tamanoi F, Walsh M, Kataoka T, Wigler M (1984) A product of yeast RAS2 gene is a guanine nucleotide binding protein. Proc Natl Acad Sci USA 81: 6924–6929

    Article  PubMed  CAS  Google Scholar 

  • Taparowsky E, Suard Y, Fasano O, Shimizu K, Goldfarb M, Wigler M (1982) Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300: 762–765

    Article  PubMed  CAS  Google Scholar 

  • Taparowsky E, Shimizu K, Goldfarb M, Wigler M (1983) Structure and activation of the human N-ras gene. Cell 34: 581–586

    Article  PubMed  CAS  Google Scholar 

  • Tatchell K, Chaleff D, Defeo-Jones D, Scolnick E (1984) Requirement of either of a pair of ras related genes of Saccharomyces cerevisiae for spore viability. Nature 309: 523–527

    Article  PubMed  CAS  Google Scholar 

  • Tatchell K, Robinson LC, Breitenbach M (1985) RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation. Proc Natl Acad Sci USA 82: 3785–3789

    Article  PubMed  CAS  Google Scholar 

  • Temeles GL, Gibbs JB, D’Alonzo JS, Sigal IS, Scolnick EM (1984) Yeast and mammalian ras proteins have conserved biochemical properties. Nature 313: 700–703

    Article  Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) in yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Cameron S, Sass P, Scott J, McMullen B, Hurwitz M, Krebs E, Wigler M (1987 a) Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7: 1371–1377

    PubMed  CAS  Google Scholar 

  • Toda T, Broek D, Field J, Michaeli T, Cameron S, Nikawa J, Sass P, Birchmeier C, Powers S, Wigler M (1987b) Exploring the function of the RAS oncogenes by studying the yeast editor S. Aaronson Saccharomyces cerevisiae. In: Oncogenes and cancer. Japan Sci Soc Press, Tokyo/VNU, Utrecht, pp 253–260

    Google Scholar 

  • Toda T, Sass P, Zoller M, Wigler M (1987c) Three different genes in S. cerevisiae erode the catalytic subunits of the subunits of the cAMP dependent protein kinase. Cell 50: 277–287

    Article  PubMed  CAS  Google Scholar 

  • Trahey M, McCormick F (1987) A cytoplasmic protein regulates the function of normal ras p21 by stimulating GTPase activity, but does not affect oncogenic mutants. Science 238: 542–545

    Article  PubMed  CAS  Google Scholar 

  • Uno I, Matsumoto K, Ishikawa T (1982) Characterization of cyclic AMP-requiring yeast mutants altered in the regulatory subunit of protein kinase. J Biol Chem 257: 14110–14115

    PubMed  CAS  Google Scholar 

  • Uno I, Matsumoto K, Aduchi K and Ishikawa T (1984 a) Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 258: 10867–10872

    Google Scholar 

  • Uno I, Mitsuzawa H, Matsumoto K, Tanaka K, Ushima I, Ishikawa T (1985) Reconstitution of the GTP-dependent adenylate cyclase from products of the yeast CYR1 and RAS2 genes in Escherichia coli. Proc Natl Acad Sci USA 82: 7855–7859

    Article  PubMed  CAS  Google Scholar 

  • Uno I, Matsumoto K, Adachi K, Ishikawa T (1984b) Characterization of cAMP-requiring mutants altered in the catalytic subunit of protein kinase. J Biol Chem 259: 12508–12513

    PubMed  CAS  Google Scholar 

  • Vogel U, Dixon R, Schaber M, Diehl R, Marshall M, Scolnick E, Sigal I, Gibbs J (1988) Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335: 90–93

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Broek, D. (1989). Eukaryotic RAS Proteins and Yeast Proteins with Which They Interact. In: Vogt, P.K. (eds) Oncogenes. Current Topics in Microbiology and Immunology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74697-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74697-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74699-4

  • Online ISBN: 978-3-642-74697-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics