Skip to main content

Hormesis und die biologische Wirkung ionisierender Strahlen: Versuche mit Lungen-Fibroblasten

  • Conference paper
Die Wirkung niedriger Strahlendosen

Zusammenfassung

Die gegenwärtige Diskussion über biologische Wirkungen ionisierender Strahlen auf Zellen und Organismen schließt das Thema „Hormesis“ ein. Luckey [25] behauptet, es bestehe kein Zweifel, daß eine niedrige Strahlendosis anstatt unvermeidlichen Schaden eine allgemein „günstige“ und/oder „stimulierende“, wenn nicht sogar lebensnotwendige Reizwirkung induziert und daß sie sogar gegen höhere Dosen schützt. Aber auch eine umfassende Belegsammlung ist noch keine Theorie. Hormesis wurde bereits in einem populären Cartoon von Walt Disney „Mein Freund, das Atom“ dargestellt. Luckey [23, 24], Flemming [11], Fremlin [12], Feldmann [10] und Wachsmann [45] haben wenig mehr als Elemente aus Disneys Fantasie erläutert. Der Leser sei auf eine differenzierte Diskussion des Hormesis-Problems hingewiesen [38].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allan D, RH Michell: Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes. Nature 258, 1975: 348–349

    Article  PubMed  CAS  Google Scholar 

  2. Baisch H, H Bluhm: Effects of X-rays on cell membranes. I. Changes of membrane potential of L-cell. Rad and environm biophys 15, 1978: 213–219

    Article  CAS  Google Scholar 

  3. Berridge MJ, RF Irvine: Inositol triophophate, a novel second messenger in cellular signal transduction. Nature 312, 1984: 315–321

    Article  PubMed  CAS  Google Scholar 

  4. Brooks RF: The transition probability model: successes, limitations and deficiencies. In: Temporal Order (eds. L. Rensing, N.I. Jaeger), Springer Berlin, Heidelberg, New York

    Google Scholar 

  5. Cairns J: The origin of human cancers. Nature 289, 1981: 353–357

    Article  PubMed  CAS  Google Scholar 

  6. Congdon CC: A review of certain low-level ionizing radiation studies in mice and guinea pigs. Health phys 52, 1987: 593–597

    Article  PubMed  CAS  Google Scholar 

  7. Fabrikant JI: Adaptation of cell renewal systems under continuous irradiation. Health phys 52, 1987: 561–570

    Article  PubMed  CAS  Google Scholar 

  8. Facchini A, NM Maraldi, S Bartoli, A Farulla, FA Manzoli: Changes in membrane receptors of B and T human lymphocytes exposed to 60Co-gamma rays. Radiat res 68, 1976: 339–348

    Article  PubMed  CAS  Google Scholar 

  9. Feinendegen LE, H Mühlensiepen, C Lindberg, J Marx, W Porschen, J Booz: Acute and temporary inhibition of thymidine kinase in mouse bone marrow cells after low-dose exposures. Int j radiat biol 45, 1984: 205–213

    Article  CAS  Google Scholar 

  10. Feldmann A: Strahlenexposition und Strahlenwirkung. Physik in u Zt 3, 1986: 80–87

    Article  Google Scholar 

  11. Feldmann A: Strahlenexposition und Strahlenwirkung. Physik in u Zt 1986; 4: 107–120

    Article  Google Scholar 

  12. Flemming K: Radiopharmacology: Hazard or/and Benefit. Nukl Med 23, 1984: 87–91

    CAS  Google Scholar 

  13. Fremlin JH: Can radiation be good for us? Nucl eng 25, 1984: 103–109

    Google Scholar 

  14. Keyse SM, RM Tyrrell: Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts. J biol chem 262, 1987: 14821–14825

    PubMed  CAS  Google Scholar 

  15. Köteles GJ: Radiation effects on cell membranes. Rad and environm biophys 21, 1982: 1–18

    Article  Google Scholar 

  16. Krishnan HG, SG Pueppke: Heat shock triggers rapid protein phosphorylation in soybean seedlings. Biochem biophys res comm 148, 1987: 762–767

    Article  PubMed  CAS  Google Scholar 

  17. Kwock L, PS Lin, L Ciborowski: Differences in the effect of ionizing radiation on Na+-dependent amino acid transport in human T (Molt-4) and human B (RPMI 1788) lymphoid cells. Radiat res 80, 1979: 512–522

    Article  PubMed  CAS  Google Scholar 

  18. Lepock JR, K H Cheng, Al-Qysi, J Kruuv: Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Can j biochem cell biol 61, 1983: 421–427

    Article  PubMed  CAS  Google Scholar 

  19. Lin P S, L Kwock, K Hefter, DFH Wallach: Modification of rat thymocyte membrane properties by hyperthermia and ionizing radiation. Int j radiat biol 33, 1978: 371–382

    Article  CAS  Google Scholar 

  20. Little JW, DW Mount: The SOS-regulatory system of Escherichia coli. Cell 29, 1982: 11–22

    Article  PubMed  CAS  Google Scholar 

  21. Low MG, AR Saltiel: Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239, 1988: 268–275

    Article  PubMed  CAS  Google Scholar 

  22. Lücke-Huhle C, P Herrlich: Alpha-radiation-induced amplification of integrated SV40 sequences is mediated by a trans-acting mechanism. Int j canc 39, 1987: 94–98

    Article  Google Scholar 

  23. Lücke-Huhle C, M Pech, P Herrlich: Selective gene amplification in mammalian cells after exposure to Co60 γ-rays,241 Am α-particles or UV light. Radiat res 106, 1986: 345

    Google Scholar 

  24. Luckey TD: Hormesis with ionizing radiation. CRC Press, Boca Raton, 1979

    Google Scholar 

  25. Luckey TD: Physiological benefits from low levels of ionizing radiation. Health phys 43: 771–789

    Google Scholar 

  26. Macieira-Coelho A, C Diatloff, E Maliase: Effect of low dose rate irradiation on the division potential of cells in vitro. II. Mouse lung fibroblasts. Exp cell res 100: 228–232

    Google Scholar 

  27. Martiel JL, A Goldbeter: Autonomous chaotic behaviour of the slime mould. Nature 313, 1985: 590–592

    Article  PubMed  CAS  Google Scholar 

  28. Mitchel REJ: The arrhenius plot behavior of a γ-radiation-releasable, membrane-bound exonuclease. Radiat res 88, 1981: 426–429

    Article  PubMed  CAS  Google Scholar 

  29. Moolenaar WH, RY Tsien, PT van der Saag, SW de Laat: Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 304 (1983): 645–648

    Article  PubMed  CAS  Google Scholar 

  30. Moolenaar WH, LGJ Tertoolen, SW de Laat: Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic pH. Nature 312, 1984: 371–374

    Article  PubMed  CAS  Google Scholar 

  31. Moolenaar WH, LGJ Tertoolen, SW de Laat: The regulation of cytoplasmic pH in human fibroblasts. J biol chem 259, 1984: 7563–7569

    PubMed  CAS  Google Scholar 

  32. Morgen RW, MF Christman, FS Jacobson, G Storz, BN Ames: Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc nat acad sci (USA) 83, 1986: 8059–8063

    Article  Google Scholar 

  33. Myers DK, RW Bide: Biochemical effects of X-irradiation on erythrocytes. Radiat res 27, 1966: 250–263

    Article  CAS  Google Scholar 

  34. Nishizuka Y: Studies and perspectives of protein kinase. Science 233, 1986: 305–312

    Article  PubMed  CAS  Google Scholar 

  35. Ojeda F, M Flores, H Folch: Radiation induced loss of anti-Ig binding ability of lymphocytes. Z naturforsch 34c, 1979: 888–889

    CAS  Google Scholar 

  36. Oliviera G, J Bodycote, S Wolff: Adaptive response of human lymphcytes to low concentrations of radioactive thymidine. Science 223, 1984: 594–597

    Article  Google Scholar 

  37. Petkau A: Effect of 22Na+ on a phospholipid membrane. Health phys 22, 1972: 239–244

    Article  PubMed  CAS  Google Scholar 

  38. Petkau A: Radiation carcinogenesis from a membrane perspective. Acta physiol scand, suppl. 492, 1980: 81–90

    CAS  Google Scholar 

  39. Radiation Hormesis. Health phys 52 (No.5) 1987

    Google Scholar 

  40. Redmann K, H L Jenssen, HJ Köhler: Experimental and functional changes in transmembrane potential and zeta potential of single cultured cells. Exp cell res 87, 1974: 281–289

    Article  PubMed  CAS  Google Scholar 

  41. Stebbing ARD, JP Norton, MD Brinsley: Dynamics of growth control in a marine yeast subjected to perturbation. J gen microbiol 130, 1984: 1799–1808

    CAS  Google Scholar 

  42. Stevenson MA, SK Calderwood, GM Hahn: Rapid increases in inositol triphosphate and intracellular Ca++ after heat shock. Biochem biophys res comm 137, 1986: 826–833

    Article  PubMed  CAS  Google Scholar 

  43. Stevenson MA, KW Minton, GM Hahn: Survival and concanavalin-A-induced capping in CHO fibroblasts after exposure to hyperthermia, ethanol and X-irradiation. Radiat res 86, 1981: 467–478

    Article  PubMed  CAS  Google Scholar 

  44. Totter JR: Physiology of the hormetic effect. Health phys 52, 1987: 549–551

    Article  PubMed  CAS  Google Scholar 

  45. Varshavsky A: Phorbol ester dramatically increases incidence of methotrexate-resistant mouse cells: possible mechanisms and relevance to tumor promotion. Cell 25, 1981: 561

    Article  PubMed  CAS  Google Scholar 

  46. Wachsmann F: Was wir über die Gefährlichkeit kleiner Strahlendosen wissen. Med tech Asstn 9, 1987: 705–707

    Google Scholar 

  47. Wagner TOF (ed) Pulsitile LHRH therapy of the male. T.M. Verlag Hameln, 1977

    Google Scholar 

  48. Wejer CJ, AJ Durston: Influence of cyclic AMP and hydrolysis products on cell type regulation in Dictyostelium discoideum. J embryl exp morph 86, 1985: 19–37

    Google Scholar 

  49. Yatvin MB: Evidence that survival of γ-irradiated Escherichia coli is influenced by membrane fluidity. Int j radiat biol 30, 1976: 571–575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vicker, M.G., Gerlach, H., Roebke, C., von der Heyde, F., Kimm, S.T., Gebauer, G. (1989). Hormesis und die biologische Wirkung ionisierender Strahlen: Versuche mit Lungen-Fibroblasten. In: Köhnlein, W., Traut, H., Fischer, M. (eds) Die Wirkung niedriger Strahlendosen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74676-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74676-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74677-2

  • Online ISBN: 978-3-642-74676-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics