Skip to main content

Noninvasive Control of Hyperthermia

  • Chapter
Methods of Hyperthermia Control

Part of the book series: Clinical Thermology ((1289))

Abstract

It is now well demonstrated that hyperthermia can constitute an efficient adjuvant to radiotherapy and chemotherapy in cancer treatment. The precondition of successful results is that hyperthermia treatments are carefully controlled according to more or less well-defined clinical protocols stipulating the most efficient treatment sequences. These protocols imply some constraints concerning the temperature distribution tolerances to be satisfied in the heated volumes in order simultaneously to obtain therapeutic efficiency inside tumoral tissues and to avoid any undesirable burning effect in surrounding healthy tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams MF, Anderson AP (1982) Synthetic aperture tomographic imaging for microwave diagnostics. Proc IEE 129 (2):83–88

    Google Scholar 

  2. Aida S, Iwama N, Ogura I (1985) Fundamental experiment of temperature dependence of ultrasound parameters. In: Egawa S (ed) Progress in hyperthermic oncology. Proc 2nd Annual Meeting Japan Soc Hyperthermic Onc 7–9 Nov, 1985, Shinshara Publishers Inc, pp 234–235

    Google Scholar 

  3. Amasha HM, Anderson AP, Conway J, Barber DC (1988) Quanitative assessment of impedance tomography for temperature measurements in microwave hyperthermia. Clin Phys Physiol Meas 9 [Suppl A]:49–53

    Article  PubMed  Google Scholar 

  4. Arcangeli G, Lombardini P, Lovisolo G, Marsiglia G, Piatelli M (1984) Focusing of 915 MHz electromagnetic power on deep human tissues: a mathematical model study. IEE Trans Bio Med Eng 31(l):47–52

    Article  CAS  Google Scholar 

  5. Barber DC, Brown BH, Freeston IL (1983) Imaging spatial distributions of resistivity using applied potential tomography. Electronic Lett (19)22:933–934

    Article  Google Scholar 

  6. Barber DC, Seager AD (1987) Fast reconstruction of resistance images. Clin Phys Physiol Meas 8 (Suppl)A: 47–54

    Article  PubMed  Google Scholar 

  7. Bardati F, Solimini D (1983) Radiometric sensing of biological layered media. Radio Sci 18 (6):1393–1401

    Article  Google Scholar 

  8. Bardati F, Mongiaro M, Solimini D (1986) Synthetic array for radiometric retrieval of fields in tissues. IEEE Trans Microwave Theory Tech 34 (5)

    Google Scholar 

  9. Barret AH, Myers PC (1975) Subcutaneous temperatures: a method of non-invasive sensing. Science 190 (4215):669–671

    Article  Google Scholar 

  10. Benjapolakul W, Shiina T, Kageyama Y, Saito M (1985) Non-invasive temperature measurement by ultrasound in hyperthermia. In: Egawas S (ed) Progress in hyperthermic oncology. Proc 2nd Annual Meeting Japan Soc Hyperthermic Onc, 7–9 Nov, 1985, Shinohara Publishers Inc, pp 232–233

    Google Scholar 

  11. Bentzen SM (1983) Quantitative computed tomography. Ph D Thesis, University of Aarhus

    Google Scholar 

  12. Bentzen SM, Overgaard J, Jorgensen J (1984) Isotherm mapping in hyperthermia using subtraction X-ray computed tomography. Radiother Oncol 2:255–260

    Article  PubMed  CAS  Google Scholar 

  13. Bolomey JC (1982) La méthode diffusion modulée: une aproche au relevé des cartes de champs microondes en temps réel. L’onde Electrique 62(5):73–78

    Google Scholar 

  14. Bolomey JC, Peronnet G, Pichot C, Jofre L, Gautherie M, Guerquin-Kern JL (1984) L’imagerie microonde active en génie biomédical. In: Lewiner J (ed) L’imagerie du corps humain. Physique, les Ulis, France

    Google Scholar 

  15. Bordure G, Delauzin JP, Dubois JB, Hay M (1985) Application et contrôle atraumatique de 1’hyperthermic par microondes pour le traitement de tumeurs superficielles. J Biophys Biomech 9:37–39

    Google Scholar 

  16. Bowen T (1982) Radiation induced thermoacoustic imaging. US Patent, PCT, US 82/00495

    Google Scholar 

  17. Brooks LA, Mitchell LG, O’Connor CM, DiChiro G (1981) On the relationship between computed tomography numbers and specific gravity. Phys Med Biol 26 (1):141–147

    Article  PubMed  CAS  Google Scholar 

  18. Brown BH, Barber DC, Seager AD (1985) Applied potential tomography: possible clinical applications. Clin Phys Physiol Meas 6:109–121

    Article  PubMed  CAS  Google Scholar 

  19. Bruggmoser G, Hinkelbein W (1986) The applicability of microwave thermography for deep-seated volumes. In: Brugmoser G et al. (eds) Recent results in cancer research, vol 101. Springer Berlin Heidelberg New York, pp 88–98

    Google Scholar 

  20. Burdette EC, Cain FL, Seals J (1980) In-vivo probe measurement technique for determining dielectric properties at VHF through microwave frequencies. IEEE Trans Microwave Theory Tech 28(4):14–427

    Article  Google Scholar 

  21. Burdette EC (1983) Influence of blood flow on tissue electrical properties: examination of regional blood flow in the dog kidney by a new probe method. Ph D Thesis, Emory University School of Medicine, Georgia

    Google Scholar 

  22. Bydder GM, Kreel L (1979) The temperature dependence of computed tomography attenuation values. J Comput Assist Tomogr 4:506–510

    Article  Google Scholar 

  23. Caspers F, Conway J (1982) Measurement of power density in a lossy material by means of electromagnetically induced acoustic signals for non-invasive determination of spatial thermal absorption in connection with pulsed hyperthermia. In: 12th-European Microwave Conference Helsinki, 13–17 Sept, 1982, Microwave Exhibitions and Publishers Ltd, pp 565–568

    Chapter  Google Scholar 

  24. Cetas C (1984) Will thermometric tomography become practical for hyperthermia treatment monitoring? Cancer Res (Suppl)44:4805s–4808s

    PubMed  CAS  Google Scholar 

  25. Cheung AY, Golding WM, Samaras GM (1981) Direct contact applicator for microwave hyperthermia. J Microwave Power 16(2):151–159

    CAS  Google Scholar 

  26. Chivé M, Plancot M, Leroy Y, Giaux G, Prévost B (1982) Microwave and radiofrequency hyperthermia monitored by microwave thermography. In: 12th European Microwave Conference Helsinki, 13–17 Sept, 1982, Microwave Exhibitions and Publishers Ltd, pp 547–552

    Chapter  Google Scholar 

  27. Chivé M (1985) Technical aspects of microwave hyperthermia controlled by microwave radiometry. Odam-Brücker Medical Report 85(1):30–34

    Google Scholar 

  28. Christensen DA (1982) Current techniques in non-invasive thermometry. In: Nussbaum GH (ed) Physical aspects of hyperthermia, médical physics monograph no 8. Amercian Institute of Physics, New York, pp 266–279

    Google Scholar 

  29. Coldefy H (1986) Contrôle non-invasif de l’hyperthermie par imagerie microonde active. Etude préliminaire sur fantôme homogène. Ph D Thesis Université de Paris-Sud

    Google Scholar 

  30. Conway J, Hawley MS, Seagar AD, Brown BH, Barber DC (1985) Applied potential tomography (APT) for non-invasive thermal imaging during hyperthermia treatment. Electronic Lett 21:836–838

    Article  Google Scholar 

  31. Conway J (1987) Electrical impedance tomography for thermal monitoring of hyperthermia treatment: an assessment using in vitro and in vivo measurements. Clin Phys Physiol Meas 8, [Suppl A]:141–146

    Article  PubMed  Google Scholar 

  32. David BJ, Lele PP (1985) An acoustic phase shift technique for the non-invasive measurement of temperature changes in tissues. Proc. IEEE 1985, Ultrasonics Symp San Francisco, CA

    Google Scholar 

  33. de Lateur BJ, Lehman JF, Stronebridge JB, Warren CG, Guy AW (1970) Muscle heating in human subjects with 915 MHz microwave contact applicator. Arch Phys Med 51:147

    Google Scholar 

  34. de Talhouët H (1986) Contribution à l’amélioration de la résolution en imagerie microonde monochromatique. Ph D Thesis, Université de Paris-Sud

    Google Scholar 

  35. Devaney AJ (1982) A filtered back-propagation algorithm for diffraction tomography. Ultrasonic Imaging 4:336–350

    Article  PubMed  CAS  Google Scholar 

  36. Dickinson RJ, Hall AS, Hind AJ, Young IR (1986) Measurement of changes in tissue temperature using MR images. J Comput Assist Tomogr 10(3):468–472

    PubMed  CAS  Google Scholar 

  37. Do-Huu JP, Mayeux C, Micheron F (1985) In-vivo effect of human tissue heating on NMR images. VIIth Meeting of ESHO, Paris

    Google Scholar 

  38. Duchêne B, Tabbara W (1985) Tomographie ultrasonore par diffraction. Rev Phys Appl 20:299–304

    Google Scholar 

  39. Edrich J, Jobe WE (1982) Imaging microwave thermography. Temperature (Am Inst Phys) 5:1379–1380

    Google Scholar 

  40. Edrich J, Hardee PC (1974) Thermography at millimetre wavelengths. Proc IEEE 62 (10):1391

    Article  Google Scholar 

  41. Enel L, Leroy Y, Van de Velde JC, Mamouni A (1984) Improved recognition of thermal structures by microwave radiometry. Electronic Lett 20(7):293–294

    Article  Google Scholar 

  42. Ermert H, Dohlus M (1986) Microwave-diffraction-tomography of cylindrical objects using 3-dimensional wave-fields. NTZ Archiv 8(5):111–117

    Google Scholar 

  43. Eyüboglu BM, Brown BH, Barber DC, Seager AD (1987) Localisation of cardiac related impedance changes in the thorax. Clin Phys Physiol Meas 8 [Suppl A]: 167–173

    Article  PubMed  Google Scholar 

  44. Fallone BG, Moran PR, Podgorsak EB (1982) Non-invasive thermometry with a clinical X-ray CT scanner. Med Phys 9(5):715–721

    Article  PubMed  CAS  Google Scholar 

  45. Gernero LH (1987) Reconstruction d’images tomographi-ques à partir d’un ensemble limité de projections. Ph D Thesis, University of Paris, Paris

    Google Scholar 

  46. Godgaonkar DK, Ghandi OP, Hagmann MJ (1983) Estimation of complex permittivities of three-dimensional biological bodies. IEEE Trans Microwave Theory Tech 31 (6):442–446

    Article  Google Scholar 

  47. Grant EH (1984) Dielectric properties of normal and malignant tissues. In: Colloquium on Electromagnetic techniques for the detection and treatment of malignant disease. IEE Digest (36): 1

    Google Scholar 

  48. Griffiths H, Ahmed A (1987) Applied potential tomography for non-invasive temperature mapping in hyperthermia. Clin Phys Physiol 8 [Suppl A]:147–153

    Article  Google Scholar 

  49. Guerquin-Kern JL (1980) Hyperthermie locale par microondes en thérapeutique cancérologique. Thèse 3ème Cycle, University of Strasbourg, Strasbourg

    Google Scholar 

  50. Guerquin-Kern JL, Gautherie M, Peronnet G, Jofre L, Bolomey JC (1985) Active microwave tomographic imaging of isolated perfused animal organs. Bioelectromagnetics 6:145–146

    Article  PubMed  CAS  Google Scholar 

  51. Guo TC, Guo WW, Larsen LE (1984) A local field study of a water-immersed microwave antenna array for medical imagery and therapy. IEEE Trans Microwave Theory Tech 32(8):844–860

    Article  Google Scholar 

  52. Guo TC, Guo WW, Larsen LE (1986) Recent developments in microwave medical imagery. Phase and amplitude conjugations and the inverse scattering theorem. In: Larsen LE, Jacobi J (eds) Medical applications of microwave imaging. IEEE P, New York, pp 167–183

    Google Scholar 

  53. Guo TC, Guo WW (1987) Physics of image formation by microwave scattering. Medical Imaging, SPIE Proc 767, (2):816–819

    Google Scholar 

  54. Guy AW (1971) Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models. IEEE Trans Microwave Theory Tech 19(2):205–213

    Article  Google Scholar 

  55. Hagmann M (1981) Application of moment methods to electromagnetic biological imaging. Proc IEEE MTT-S Symposium, Los Angeles, 15–19 June 1981, p 482

    Google Scholar 

  56. Hand JW (1984) Thermometry in hyperthermia. In: Overgaard J (ed) Hyperthermia oncology, vol 2. Taylor and Francis, London, pp 299–308

    Google Scholar 

  57. Haney MJ, O’Brien WD (1982) Ultrasonic tomography for differential thermography. In: Ash EA, Hills CR (eds) Acoustic imaging. Plenum, New York, pp 589–597

    Google Scholar 

  58. Harrington RF (1961) Time harmonic electromagnetic fields. McGraw-Hill, New York

    Google Scholar 

  59. Harris ND, Suggett AJ, Barber DC, Brown BH (1987) Application of applied potential tomography (APT) in respiratory medicine. Clin Phys Physiol Meas 8 [Suppl A]:155–165

    Article  PubMed  Google Scholar 

  60. Haslam NC, Gillespie AR, Haslam CGT (1984) Aperture synthesis thermography: a new approach to passive microwave temperature measurement in the body. IEEE Trans Microwave Theory Tech 32(8):829–835

    Article  Google Scholar 

  61. Hawley MS (1986) Microwave radiometric thermometry in layered tissue structures. PhD Thesis, University of Sheffield, Sheffield

    Google Scholar 

  62. Hawley MS, Conway J, Anderson AP, Cudd PA (1988) The influence of tissue layering on microwave thermographic measurements. Int J Hyperthermia 4(4):427–435

    Article  PubMed  CAS  Google Scholar 

  63. Hay M, Dubois JB, Bordure G (1987) Applicateurs à géométrie variable et contrôle atraumatique de l’hyperthermie par microondes de 2450 MHz dans le traitement des tumeurs superficielles. Innov Tech Biol Med 8 (3): 294–305

    Google Scholar 

  64. Hessary MK, Chen KM (1984) EM local heating with HF electric fields. IEEE Trans Microwave Theory Tech 32 (6):569–576

    Article  Google Scholar 

  65. Hirai S, Nikawa Y, Okada F, Kikuchi M, Mori S (1987) Dual waveguide applicator with temperature measurement in EM hyperthermia. IEEE 9th Annual Conf IEEE-EMB Soc, pp 1308–1309

    Google Scholar 

  66. Jacobi JH, Larsen LE, Hast CT (1979) Water-immersed microwave antennas and their application to microwave interrogation of biological targets. IEEE Trans Microwave Theory Tech 27(1):70–78

    Article  Google Scholar 

  67. Jacobi JH, Larsen LE (1980) Microwave time-delay spectroscopic imagery of isolated canine kidney. Med Phys 7 (1):1–7

    Article  PubMed  CAS  Google Scholar 

  68. Jofre L, Reyes E, Ferrando M, Elias A, Romeu J, Baquero M (1986) A cylindrical system for quasi-real time microwave tomography. 16th European Microwave Conference, Dublin, pp 599–604

    Google Scholar 

  69. Kaveh M, Soumekh M, Greenleaf JF (1984) Signal processing for diffraction tomography. IEEE Trans SUU-31 (4):230–239

    Google Scholar 

  70. Knüttel B, Juretschke HP (1986) Temperature measurement by nuclear magnetic resonance and its possible use as a means of in-vivo non-invasive temperature measurement and for hyperthermia treatment assessment. Recent Results Cancer Res 101:109–118

    PubMed  Google Scholar 

  71. Krug J, Edenhofer P (1985) Microwave acoustic imaging for medical applications. 17th European Microwave Conference, Paris, 9–13 Sept 1985, pp 655–660

    Google Scholar 

  72. Krug J (1987) Private communication

    Google Scholar 

  73. Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon, New York

    Google Scholar 

  74. Larsen LE, Jacobi JH (1979) Microwave scattering parameter imagery of an isolated canine kidney. Med Phys 6 (5):394–403

    Article  PubMed  CAS  Google Scholar 

  75. Larsen LE, Jacobi JH (1982) Microwaves offer promise as imaging modality. Diagn Imag Clin Med 11:44–47

    Google Scholar 

  76. Lewa J, Majewska Z (1980) Temperature relationship of proton spin-lattice relaxation time T1 in biological tissues. Bull Cancer 67(5):525–530

    PubMed  CAS  Google Scholar 

  77. Ludeke KM, Koehler J, Kanzenbach J (1979) A radiation balanced microwave thermograph for medical applications. Acta Electronica 22(1):65–69

    Google Scholar 

  78. Mamouni A, Leroy Y, Van de Velde JC, Bellardi L (1983) Introduction to correlation microwave thermography. J Microwave Power 18(3):285–293

    CAS  Google Scholar 

  79. Man (1974) ICRP 23, Pergamon Press, Oxford

    Google Scholar 

  80. Milligan AJ, Couran PB, Ropar MA, McCulloch HA, Ahuja RK, Dobelbower RR (1983) Predictions of blood flow from thermal clearance during regional hyperthermia. Int J Radiat Oncol Biol Phys 9:1335–1343

    Article  PubMed  CAS  Google Scholar 

  81. Mizushina S (1987) Automedica 8 (4) (special issue on noninvasive temperature measurement)

    Google Scholar 

  82. Mueller RK, Kaveh M, Wade G (1979) Reconstruction tomography and application to ultrasonics. Proc IEEE, 67 (4):567–587

    Article  Google Scholar 

  83. Nasoni RL, Bowen T, Conner WG, Sholes RR (1979) In-vivo temperature dependence of ultrasound speed in tissue and its applications to non-invasive temperature monitoring. Ultrason Imaging 1(1):34–414

    Article  PubMed  CAS  Google Scholar 

  84. Newman WH, Dittwar A, Delhomme G, Delannoy J (1986) Tumor perfusion during microwave hyperthermia: preliminary measurements. Proc IEEE 8th Ann Conf EMB Soc pp 1503–1506

    Google Scholar 

  85. Olsen RG, Lin JC (1981) Microwave pulse induced resonances in spherical head models. IEEE Trans Microwave Theory Tech 29(10):1114–1117

    Article  Google Scholar 

  86. Olsen RG, Lin JC (1983) Acoustical imaging of a model of human hand using pulsed microwave irradiation. Bioelec-tromagnetics 4:397–400

    Article  CAS  Google Scholar 

  87. Pichot C, Jofre L, Peronnet G, Bolomey JC (1985) Active microwave imaging of inhomogeneous bodies. IEEE Trans AP 33(4):416–425

    Google Scholar 

  88. Plancot M, Prévost B, Chivé M, Fabre JJ, Ledel I, Giaux G (1987) A new method for thermal dosimetry in microwave hyperthermia using microwave radiometry for temperature control. Int J Hyperthermia 3(1):9–19

    Article  PubMed  CAS  Google Scholar 

  89. Rajagopalan B, Greenleaf JF, Thomas PJ, Johnson JA, Bahn RC (1979) Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography. In: Linzer M (ed) Ultrasound tissue characterization. US Gov Printing Office, NBS Special Publication, Washington DC, 525, pp 227–233

    Google Scholar 

  90. Rangayyan RM (1986) Computed tomography techniques and algorithms: a tutorial. Innov Tech Biol Med 7(6): 746–762

    Google Scholar 

  91. Robert J, Marchai C, Escanye JM, Thouvenot P, Gaulard ML, Tosser A (1981) Ultrasound velocimetry for hyperthermia control. Prog Clin Biol Res 107:555

    Google Scholar 

  92. Robillard M (1981) Contribution à l’étude des sondes et à la reconnaissance d’objet thermique par la thermographie microonde. Thèse 3ème Cycle, Université de Lille, Lille

    Google Scholar 

  93. Roubine E, Bolomey JC (1977) Antennes. Masson, Paris

    Google Scholar 

  94. Seagar AD, Brown BH (1987) Limitation in hardware design in impedance imaging. Clin Phys Physiol Meas 8 [Suppl A]:85–90

    Article  PubMed  Google Scholar 

  95. Seagar AD, Barber DC, Brown BH (1987) Theoretical limits to sensitivity and resolution in impedance imaging. Clin Phys Physiol Meas 8 [Suppl A]:13–31

    Article  PubMed  Google Scholar 

  96. Slaney M, Kak AC, Larsen LE (1984) Limitations of imaging with first-order diffraction tomography. IEEE Trans Microwave Theory Tech 32(8):860–874

    Article  Google Scholar 

  97. Tarassenko L, Rolfe P (1984) Imaging spatial distributions of resistivity — an alternative approach. Electronic Lett 20 (14):574–575

    Article  Google Scholar 

  98. Van Hippel (1955) Dielectric materials and applications. Wiley, New York

    Google Scholar 

  99. Yorkey TJ, Webster JG (1987) A comparison of impedance tomographic reconstruction algorithms. Clin Phys Physiol Meas 8 [Suppl A]:55–62

    Article  PubMed  Google Scholar 

  100. Zamenhof RG, Sternick ES, Curran B (1983) Comments on “non-invasive thermometry with a clinical X-ray CT scanner”. Med Phys 10(3):374

    Article  PubMed  CAS  Google Scholar 

  101. Zamenhoff RG, Sternick ES, Curran BM (1981) Non-invasive temperature mapping by computerized tomography. Int J Radiat Oncol Biol Phys 7:1235

    Google Scholar 

  102. Zheng E, Shao S, Webster JG (1984) Impedance of skeletal muscle from 1 Hz to 1 MHz. IEEE Trans Biomed Eng 31 (6):477–481

    Article  PubMed  CAS  Google Scholar 

  103. Parker DL, Smith V, Sheldon P, Crooks LE, Fussell L (1983) Temperature distribution measurements in two-dimensional NMR imaging. Med Phys 10 (3):321–325

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bolomey, J.C., Hawley, M.S. (1990). Noninvasive Control of Hyperthermia. In: Gautherie, M. (eds) Methods of Hyperthermia Control. Clinical Thermology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74636-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74636-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74638-3

  • Online ISBN: 978-3-642-74636-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics