Advertisement

Biophysics and Technology of Electromagnetic Hyperthermia

  • J. W. Hand
Chapter
Part of the Clinical Thermology book series (CLIN THERM)

Abstract

According to Licht (1965) in his excellent account of the history of the therapeutic use of heat, the earliest medical applications of electric current were developed during the 1830s and 1840s. They included the coagulation of blood in aneurysms and the destruction of fungoid growths. Shortly afterwards Sedillot (1853) reported using electric cautery to destroy tumours. Indeed, the use of cautery became widespread during the following decades, leading to the development of the galvanic knife (Boeckel 1873). These early techniques involved the application of dc currents directly to the tissues.

Keywords

Specific Absorption Rate Power Deposition High Frequency Current Regional Hyperthermia Pancake Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACGIH (1983) American Conference of Governmental Industrial Hygienists. Documentation for threshold limit values (TLV’s) for chemical substances and physical agents in the work environment with intended changes. ACGIH, CincinnatiGoogle Scholar
  2. Adair ER (ed) (1983) Microwaves and thermoregulation. Academic, New YorkGoogle Scholar
  3. Adey WR (1981) Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 61: 435–514PubMedGoogle Scholar
  4. Allen S, Kantor G, Bassen H, Ruggera P (1988) CDRH RF phantom for hyperthermia systems evaluation. Int J Hyperthermia 4: 17–23PubMedCrossRefGoogle Scholar
  5. Andreuccetti D, Bini M, Ignesti A, Olmi R, Rubino N, Vanni R (1988) Use of polyacrylamide as a tissue equivalent material in the microwave range. IEEE Trans Biomed Eng BME 35: 275–277CrossRefGoogle Scholar
  6. ANSI (1982) American national standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 300 kHz to 100 GHz. ANSI C95. 1–1982. IEEE, New YorkGoogle Scholar
  7. Antolini R, Cerri G, DeLeo R (1984) Influence of the bolus on the radiation characteristics of waveguide applicators. In: Overgaard J (ed) Hyperthermic oncology, vol 1. Taylor and Francis, London, pp 651–654Google Scholar
  8. Armitage DW, LeVeen HH, Pethig R (1983) Radiofrequency induced hyperthermia: computer simulation of specific absorption rate distributions using realistic anatomical models. Phys Med Biol 28: 31–42PubMedCrossRefGoogle Scholar
  9. Audet J, Bolomey JC, Pichot C, N’Guyen DD, Chive M, Leroy Y (1980) Electrical characteristics of waveguide applicators for medical applications. J Microwave Power 15: 177–186Google Scholar
  10. Bach Andersen J (1985) Theoretical limitations on radiation into muscle tissue. Int J Hyperthermia 1: 45–56CrossRefGoogle Scholar
  11. Bach Andersen J (1986) Regional electromagnetic heating. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies, Letchworth, pp 65–97Google Scholar
  12. Bach Andersen J (1987) Electromagnetic power deposition: in-homogeneous media, applicators and phased arrays. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Nijhoff, Dordrecht, pp 159–188Google Scholar
  13. Bach Andersen J, Raskmark P (1985) A regional hyperthermia phases array system. Proceedings 7th annual conference of the Engineering in Medicine and Biology society. IEEE, New York, pp 331–333Google Scholar
  14. Bach Andersen J, Baun A, Harmark K, Heinzl L, Raskmark P, Overgaard J (1984) A hyperthermia system using a new type of inductive applicator. IEEE Trans Biomed Eng BME 31: 21–27CrossRefGoogle Scholar
  15. Bahl IJ, Stuchly SS (1980) Analysis of a microstrip covered with a lossy dielectric. IEEE Trans Microwave Theory Tech MTT 28: 104–109CrossRefGoogle Scholar
  16. Bahl IJ, Bhartia P, Stuchly SS (1982) Design of microstrip antennas covered with a dielectric layer. IEEE Trans Antennas Propag AP 30: 314–318CrossRefGoogle Scholar
  17. Bahl IJ, Stuchly SS, Stuchly MA (1980) A new microstrip radiator for medical applications. IEEE Trans Microwave Theory Tech MTT 28: 1464–1468CrossRefGoogle Scholar
  18. Balzano Q, Garay O, Steel FR (1979) An attempt to evaluate the exposure of operators of portable radios at 30 MHz. In: Proceedings of the 29th IEEE Vehicular Technology Society conference, Arlington Heights. IEEE, New York, pp 187–189Google Scholar
  19. Baranski S, Czerski P (eds) (1976) Biological effects of microwaves. Dowden, Hutchinson and Ross, StroudsburgGoogle Scholar
  20. Bardati F (1986) Models of electromagnetic heating and radiometric microwave sensing. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies, Letchworth, pp 327–382Google Scholar
  21. Bassen HI, Coakley RF (1981) United States radiation safety and regulatory considerations for radiofrequency hyperthermia systems. J Microwave Power 16: 215–216Google Scholar
  22. Bassen HI, Smith GS (1983) Electric field probes — a review. IEEE Trans Antennas Propag AP-31: 710–718CrossRefGoogle Scholar
  23. Batchman TE, Gimpelson G (1983) An implantable electric-field probe of submillimeter dimensions. IEEE Trans Microwave Theory Tech MTT 31: 745–751CrossRefGoogle Scholar
  24. Beyne L, de Zutter D (1988) Power deposition of a microstrip applicator radiating into a layered biological structure. IEEE Trans Microwave Theory Tech MTT 36: 126–131Google Scholar
  25. Binger CAL, Christie RV (1927) An experimental study of diathermy: the conditions necessary for the production of local heat in the lungs. J Exp Med 46: 585–594PubMedCrossRefGoogle Scholar
  26. Bini MG, Ignesti A, Millanta L, Olmi R, Rubino N, Vanni R (1984) The polyacrylamide as a phantom material for electromagnetic hyperthermia studies IEEE Trans Biomed Eng BME 31: 317–322CrossRefGoogle Scholar
  27. Bini M, Ignesti A, Millanta L, Olmi R, Rubino N, Vanni R (1985) An unbalanced electric applicator for RF hyperthermia. IEEE Trans Biomed Eng BME 32: 638–642CrossRefGoogle Scholar
  28. Boeckel G (1873) Galvanocaustique thermique. ParisGoogle Scholar
  29. Borup DT, Gandhi OP (1984) Fast-Fourier-transform method for calculation of SAR in finely discretized inhomogeneous models of biological bodies. IEEE Trans Microwave Theory Tech MTT 32: 730–746CrossRefGoogle Scholar
  30. Borup DT, Gandhi OP (1985) Calculation of high-resolution SAR distributions in biological bodies using the FFT algorithm and conjugate gradient method. IEEE Trans Microwave Theory Tech MTT 33: 417–419CrossRefGoogle Scholar
  31. Bozzetti M, DeLeo T, Ercoli C (1983) Energy absorption from waveguides in biological-like media. Alta Freq 52: 185–187Google Scholar
  32. Brezovich IA, Lilly MB, Durant JR, Richards DB (1981) A practical system for clinical radiofrequency hyperthermia. Int J Radiat Oncol Biol Phys 7: 423–430PubMedCrossRefGoogle Scholar
  33. Brezovich IA, Young JH, Atkinson WJ, Wang MT (1982) Hyperthermia considerations for a conducting cylinder heated by an oscillating electric field applied parallel to the cylinder axis. Med Phys 9: 746–748PubMedCrossRefGoogle Scholar
  34. Carpenter RL (1977) Microwave radiation. In: Lee DHK, Falk HL, Murphy SD (eds) Handbook of physiology no 9. Reactions to environmental agents. American Physiology Society, Bethesda, pp 111–125Google Scholar
  35. Carpenter CM, Page AB (1930) Production of fever in man by short radio waves. Science 71: 450–452PubMedCrossRefGoogle Scholar
  36. CEC (1980) Commission of the European Communities proposal for microwave and radiowave exposure standard. CEC, LuxembourgGoogle Scholar
  37. Cetas TC (1982) The philosophy and use of tissue-equivalent electromagnetic phantoms. In: Nussbaum GH (ed) Physical aspects of hyperthermia. American Institute of Physics, New York, pp 441–461Google Scholar
  38. Charny CK, Levin RL (1988) Simulations of MAPA and APA heating using a whole body thermal model. IEEE Trans Biomed Eng BME 35: 362–371CrossRefGoogle Scholar
  39. Charny CK, Guerquin-Kern JL, Hagmann MJ, Levin SW, Lack EE, Sindelar WF, Zabell A, Glatstein E, Levin RL (1986) Human leg heating using a mini-annular phased array. Med Phys 13: 449–456PubMedCrossRefGoogle Scholar
  40. Charny CK, Hagmann MJ, Levin RL (1987) A whole body thermal model of man during hyperthermia. IEEE Trans Biomed Eng BME 34: 375–387CrossRefGoogle Scholar
  41. Cheever E, Leonard JB, Foster KR (1987) Depth of penetration of fields from rectangular apertures into lossy media. IEEE Trans Microwave Theory Tech MTT 35: 865–867CrossRefGoogle Scholar
  42. Chen KM, Guru BS (1977) Internal EM field and absorbed power density in human torsos induced by 1–500 MHz EM waves. IEEE Trans Microwave Theory Tech MTT 25: 746–755CrossRefGoogle Scholar
  43. Chen TS (1957) Calculation of parameters of ridge waveguides. IRE Trans Microwave Theory Tech MTT 5: 12–17CrossRefGoogle Scholar
  44. Cheung AY, Dao T, Robinson JE (1977) Dual-beam TEM applicator for direct contact heating of dielectrically encapsulated malignant mouse tumor. Radio Sci 12 (6 S): 81–85CrossRefGoogle Scholar
  45. Chou CK (1987) Biological effects of electromagnetic waves. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Nijhoff, Dordrecht, pp 319–353Google Scholar
  46. Chou CK, Chen GW, Guy AW, Luk KH (1984) Formulas for preparing phantbn muscle tissue at various radiofrequencies. Bioelectromagnetics 5: 435–441PubMedCrossRefGoogle Scholar
  47. Christie RV, Loomis AL (1929) The relationship of frequency to physiological effects of high frequency currents. J Exp Med 49: 303–321PubMedCrossRefGoogle Scholar
  48. Christie RV, Ehrlich W, Binger CAL (1928) An experimental study of diathermy: the elevation of temperature in the pneumonic lung. J Exp Med 47: 741–755PubMedCrossRefGoogle Scholar
  49. Cleary SF (1970) Biological effects of microwave and radiofre- quency radiation. Crit Rev Environ Control 1: 257–306CrossRefGoogle Scholar
  50. Cleary SF (1983) Bioeffects of microwave and radiofrequency radiation. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall Medical, Boston, pp 545–566Google Scholar
  51. Coldefy HM, Charny CK, Levin RL (1987) Theoretical and experimental results of power deposition in human legs irradiated by a MAPA. In: Proceedings of 9th annual conference of IEEE Engineering in Medicine and Biology Society, Boston, Nov 1987, vol 4. IEEE, New York, pp 1949–1950Google Scholar
  52. Collin RE (1960) Field theory of guided waves. McGraw-Hill, New York, chap 7Google Scholar
  53. Corry PM, Jabboury K, Kong JS, Armour EP, McGraw FJ, LeDuc T (1988) Evaluation of equipment for hyperthermia treatment of cancer. Int J Hyperthermia 4: 53–74PubMedCrossRefGoogle Scholar
  54. Council on Physical Therapy (1934) Hyperpyrexia produced by physical agents. JAMA 103: 1308–1309Google Scholar
  55. Czerski P (1985) Radiofrequency radiation exposure limits in Eastern Europe. J Microwave Power 20: 233–239Google Scholar
  56. de Leeuw AAC, Lagendijk JJW (1987) Design of a deep-body hyperthermia system based on the ‘coaxial TEM’ applicator. Int J Hyperthermia 3: 413–421PubMedCrossRefGoogle Scholar
  57. Denier A (1936) Les ondes herziennes ultracourtes de 80 cm. J Radio Electrol 20: 193–197Google Scholar
  58. DIN (1984) Hazards by electromagnetic fields. Protection of persons in the frequency range 10 kHz to 3000 GHz. DIN 57848, Part 2. Deutsche Elektrotechnische Kommission im DIN and VDE (DKE), BerlinGoogle Scholar
  59. Dodge CH, Glaser ZR (1977) Trends in nonionizing electromagnetic radiation bioeffects research and related occupational health aspects. J Microwave Power 12: 319–334Google Scholar
  60. Doss JD (1982) Calculations of electric fields in conductive media. Med Phys 9: 566–573PubMedCrossRefGoogle Scholar
  61. Durney CH (1980) Electromagnetic dosimetry for models of humans and animals: a review of theoretical and numerical techniques. Proc IEEE 68: 33–40CrossRefGoogle Scholar
  62. Durney CH (1987) Calculation of electromagnetic power deposition. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Nijhoff, Dordrecht, pp 152–158Google Scholar
  63. Edenhofer P (1983) Field characteristics of a dual antenna sensor system probing biological tissues. Proceedings URSI symposium on electromagnetic theory, Santiago de Compostela, Spain, Aug 1983, pp 685–688Google Scholar
  64. Eidinow A (1935) Discussion on short wave diathermy. Proc R Soc Med 28: 312–315Google Scholar
  65. Elder JA, Cahill DF (1984) Biological effects of radiofrequency radiation. Report EPA–600/8–83–026F. Health Effects Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, NCGoogle Scholar
  66. Franconi C (1987) Hyperthermia heating technology and devices. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Nijhoff, Dordrecht, pp 80–122Google Scholar
  67. Franconi C, Tiberio CA, Raganella L, Begnozzi L (1986) Low frequency RF twin-dipole applicator for intermediate depth hyperthermia. IEEE Trans Microwave Theory Tech MTT 34: 612–619CrossRefGoogle Scholar
  68. Fray C, Khayata N, Papiernik A (1982) TM10 admittance and radiation from a flanged open-ended waveguide in layered absorbing media. Arch Elektron Übertragungstech 36: 107–110Google Scholar
  69. Furukawa M, Kato H, Fujita Y, Uchida N, Kasai T, Ishida T (1988) Clinical trials of hyperthermia with inductive aperture-type applicator. In: Koga S (ed) Hyperthermic oncology in Japan ‘87. Imai, Yonago, Japan, pp 101–102Google Scholar
  70. Gajda G, Stuchly MA, Stuchly SS (1979) Mapping of the near field pattern in simulated biological tissues. Electron Lett 15: 120–121CrossRefGoogle Scholar
  71. Gandhi OP (1979) Dosimetry — the absorption properties of man and experimental animals. Bull NY Acad Med 55: 990–1020Google Scholar
  72. Gandhi OP, DeFord JF, Kanai H (1984) Impedance method for calculation of power deposition patterns in magnetically induced hyperthermia IEEE Trans Biomed Eng BME 31: 644–651CrossRefGoogle Scholar
  73. Gee W, Lee S-W, Bong NK, Cain CA, Mittra R, Magin RL (1984) Focused array hyperthermia applicator: theory and experiment. IEEE Trans Biomed Eng BME 31: 38–46CrossRefGoogle Scholar
  74. Gibbs FA, Stewart JR (1985) Regional hyperthermia in the treat- ment of cancer: a review. Cancer Invest 3: 445–452PubMedCrossRefGoogle Scholar
  75. Gibbs FA, Sapozink MD, Gates KS, Stewart JR (1984) Regional hyperthermia with an annular phased array in the experimental treatment of cancer: report of work in progress with a technical emphasis IEEE Trans Biomed Eng BME 31: 115–119CrossRefGoogle Scholar
  76. Gosset A, Gutmann A, Lakhovsky G, Magrou J (1924) Essais de therapeutique du `cancer experimental des plantes’. C R Soc Biol (Paris) 91: 626–628Google Scholar
  77. Guerquin-Kern JL, Hagmann MJ, Levin RL (1987) Experimental characterization of the miniannular phased array as a hyperthermia applicator. Med Phys 14: 674–680PubMedCrossRefGoogle Scholar
  78. Guo TC, Guo WW, Larsen LE (1984) A local field study of a water-immersed microwave antenna array for medical imagery and therapy. IEEE Trans Microwave Theory Tech MTT 32: 844–854CrossRefGoogle Scholar
  79. Guy AW (1971a) Analysis of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models. IEEE Trans Microwave Theory Tech MTT 19:205–214CrossRefGoogle Scholar
  80. Guy AW (1971b) Electromagnetic fields and relative heating patterns due to a rectangular aperture source in direct contact with bilayered biological tissue. IEEE Trans Microwave Theory Tech MTT 19:214–223CrossRefGoogle Scholar
  81. Guy AW (1984) History of biological and medical applications of microwave energy. IEEE Trans Microwave Theory Tech MTT 32: 1182–1200CrossRefGoogle Scholar
  82. Guy AW, Lehmann JF (1966) On the determination of an optimum microwave diathermy frequency for a direct contact applicator. IEEE Trans Biomed Eng BME 13: 76–87CrossRefGoogle Scholar
  83. Guy AW, Lehmann JF, Stonebridge JB (1974) Therapeutic applications of electromagnetic power. Proc IEEE 62: 55–75CrossRefGoogle Scholar
  84. Hagmann MJ (1984) Propagation on a sheath helix in a coaxially layered lossy dielectric medium. IEEE Trans Microwave Theory Tech MTT 32: 122–126CrossRefGoogle Scholar
  85. Hagmann MJ (1988) Optimization of helical coil applicators for hyperthermia. IEEE Trans Microwave Theory Tech MTT 36: 148–150CrossRefGoogle Scholar
  86. Hagmann MJ, Levin RL (1984) Analysis of the helix as an RF applicator for hyperthermia. Electron Lett 20: 337–338CrossRefGoogle Scholar
  87. Hagmann MJ, Levin RL (1985) Coupling efficiency of helical coil hyperthermia applications. IEEE Trans Biomed Eng BME 32: 539–540CrossRefGoogle Scholar
  88. Hagmann MJ, Levin RL (1986) Aberrant heating: a problem in regional hyperthermia. IEEE Trans Biomed Eng BME 33: 405–411CrossRefGoogle Scholar
  89. Hagmann MJ, Levin RL, Turner PF (1985) A comparison of the annular phased array to helical coil applicators for limb and torso hyperthermia. IEEE Trans Biomed Eng BME 32: 916–927CrossRefGoogle Scholar
  90. Halac S, Roemer RB, Oleson JR, Cetas TC (1983) Magnetic induction heating of tissue: numerical evaluation of tumor temperature distributions. Int J Radiat Oncol Biol Phys 9: 881–981PubMedCrossRefGoogle Scholar
  91. Hand JW (1987) Electromagnetic applicators for non-invasive hyperthermia. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Nijhoff, Dordrecht, pp 189–210Google Scholar
  92. Hand JW, Cheetham JL, Hind AJ (1986) Absorbed power distributions from coherent microwave arrays for localized hyperthermia. IEEE Trans Microwave Theory Tech MTT 34: 484–489CrossRefGoogle Scholar
  93. Hand JW, Hind AJ (1986) A review of microwave and rf applicators for localised hyperthermia. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies, Letchworth, pp 98–148Google Scholar
  94. Hand JW, Hind AJ, Cheetham JL (1985) Multielement microwave array applicators for localized hyperthermia (Abstract). Strahlentherapie 161: 535Google Scholar
  95. Hand JW, Johnson RH (1986) Field penetration from electromagnetic applicators for localized hyperthermia. In: Bruggmoser G, Hinkelbein W, Engelhardt R, Wannemacher M (eds) Locoregional high-frequency hyperthermia and temperature measurement. Springer, Berlin Heidelberg New York, pp 7–17 (Recent results in cancer research, vol 101 )Google Scholar
  96. Hand JW, Ledda JL, Evans NTS (1982) Considerations of radiofrequency induction heating for localised hyperthermia. Phys Med Biol 27: 1–16PubMedCrossRefGoogle Scholar
  97. Hand JW, Johnson RH, James JR (1987) A microwave hyperthermia system with multi-element applicator for treatment of superficial tumours. Int J Hyperthermia 3: 566–567Google Scholar
  98. Hand JW, Johnson RH, James JR (1987) A microwave hyperthermia system with multi-element applicator for treatment of superficial tumours. Int J Hyperthermia 3: 566–567Google Scholar
  99. Hand JW, Johnson RH, James JR (1987) A microwave hyperthermia system with multi-element applicator for treatment of superficial tumours. Int J Hyperthermia 3: 566–567Google Scholar
  100. Harrington RF (1961) Time-harmonic electromagnetic fields. McGraw-Hill, New YorkGoogle Scholar
  101. Harrington RF (1968) Field computation by moment methods. Macmillan, New YorkGoogle Scholar
  102. Hartsgrove G, Kraszewski A, Surowiec A (1987) Simulated biological materials for electromagnetic radiation absorption studies. Bioelectromagnetics 8: 29–36PubMedCrossRefGoogle Scholar
  103. Hazzard DG (ed) (1977) Symposium on the biological effects and measurements of radio frequency/microwaves. HEW publication (FDA) 77–8026. United States Department of Health, Education and Welfare, Rockville, MDGoogle Scholar
  104. Hill SC, Christensen DA, Durney CH (1983) Power deposition patterns in magnetically-induced hyperthermia: a two dimensional low frequency numerical analysis. Int J Radiat Oncol Biol Phys 9: 893–904PubMedCrossRefGoogle Scholar
  105. Hiraoka M, Jo S, Takahashi M, Abe M (1985) Effectiveness of RF capacitive heating in the heating of human deep-seated tumors. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in cancer therapy. Mag Bros, Tokyo, pp 98–99Google Scholar
  106. Ho HS (1979) Design of aperture sources for deep heating using electromagnetic energy. Health Phys 37: 743–750PubMedCrossRefGoogle Scholar
  107. Ho HS, Guy AW, Sigelmann RA, Lehmann JF (1971) Microwave heating of simulated human limbs by aperture sources. IEEE Trans Microwave Theory Tech MTT 19: 224–231CrossRefGoogle Scholar
  108. Hopfer S (1955) The design of ridge waveguides. IRE Trans Microwave Theory Tech MTT 3: 20–29CrossRefGoogle Scholar
  109. Hosmer (1928) Heating effects observed in a high-frequency static field. Science 68: 325–327PubMedCrossRefGoogle Scholar
  110. Howard GCW, Sathiaseelan V, King GA, Dixon AK, Anderson A, Bleehen NM (1986) Regional hyperthermia for extensive pelvic tumours using an annular phased array applicator: a feasibility study. Br J Radiol 59: 1195–1201PubMedCrossRefGoogle Scholar
  111. Hudson AC (1957) Matching the sides of a parallel plate region. IRE Trans Microwave Theory Tech MTT 5: 161–162CrossRefGoogle Scholar
  112. Ikeda H, Fujii M, Sakamoto K, Kanai H (1988) RF inductive hyperthermia for deep seated tumor. In: Koga S (ed) Hyper-thermic oncology in Japan ‘87. Imai, Yonago, Japan, pp 169–170Google Scholar
  113. IRPA (1984) Interim guidelines on limits of exposure to radiofrequency electromagnetic fields in the frequency range from 100 kHz to 300 GHz (International Non-ionising Radiation Committee of the International Radiation Protection Association). Health Phys 46: 975–984Google Scholar
  114. Iskander MF (1982) Physical aspects and methods of hyperthermia production by rf currents and microwaves. In: Nussbaum GH (ed) Physical aspects of hyperthermia. American Institute of Physics, New York, pp 151–191Google Scholar
  115. Iskander MF, Khoshdel-Milani O (1984) Numerical calculations of the temperature distribution in realistic cross sections of the human body. Int J Radiat Oncol Biol Phys 10: 1907–1912PubMedCrossRefGoogle Scholar
  116. Iskander MF, Turner PF, Dubow JB, Kao J (1982) Two dimensional technique to calculate the EM power deposition pattern in the human body. J Microwave Power 17: 175–185Google Scholar
  117. Jain RK, Ward-Hartley K (1984) Tumor blood flow — characterization, modifications and role in hyperthermia. IEEE Trans Sonics Ultrason SU-31: 504–526Google Scholar
  118. James JR, Hall PS, Wood C (1981) Microstrip antenna theory and design. Peregrinus, Stevenage, UKGoogle Scholar
  119. James JR, Johnson RH, Henderson A (1986) Compact microwave applicators. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies, Letchworth, pp 149–209Google Scholar
  120. Johnk CTA (1975) Engineering electromagnetic fields and waves. Wiley, New York, chap 8Google Scholar
  121. Johnson CC (1965) Field and wave electrodynamics. McGraw-Hill, New York, pp 195–202Google Scholar
  122. Johnson CC, Guy AW (1972) Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60: 692–718CrossRefGoogle Scholar
  123. Johnson CC, Shore ML (eds) (1976) Biological effects of electromagnetic waves (vol 1, 2). HEW publications (FDA) 77–8010 and 77–8011. United States Department of Health, Education and Welfare, Rockville, MDGoogle Scholar
  124. Johnson RH (1986) New type of compact electromagnetic applicator for hyperthermia in the treatment of cancer. Proc IEE 22: 591–593Google Scholar
  125. Johnson RH, James JR, Hand JW, Hopewell JW, Dunlop PRC, Dickinson RJ (1984) New low-profile applicators for local heating of tissues. IEEE Trans Biomed Eng BME 31: 28–37CrossRefGoogle Scholar
  126. Johnson RH, Andrasic G, Smith DLM, James JR (1985) Field penetration of arrays of compact applicators in localized hyperthermia. Int J Hyperthermia 1: 321–326PubMedCrossRefGoogle Scholar
  127. Johnson RH, Preece AW, Hand JW, James JR (1987) A new type of lightweight low-frequency electromagnetic hyperthermia applicator. IEEE Trans Microwave Theory Tech MTT 35: 1317–1321CrossRefGoogle Scholar
  128. Jones CH, Carnochan P (1986) Infrared thermography and liquid crystal plate thermography. In: Hand JW, James JR (eds) Physical aspects of clinical hyperthermia. Research Studies, Letchworth, pp 507–547Google Scholar
  129. Jordan EC, Balmain KG (1968) Electromagnetic waves and radiating systems, 2nd edn. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  130. Jouvie F, Bolomey JC, Gaboriaud G (1986) Discussion of capabilities of microwave phase arrays for hyperthermia treatment of neck tumors. IEEE Trans Microwave Theory Tech MTT 34: 495–501CrossRefGoogle Scholar
  131. Kantor G, Moon CY (1983) The performance of inductive shortwave diathermy applicators In• IEEE MTT-S international microwave symposium digest. IEEE, New York, pp 456–458Google Scholar
  132. Kantor G, Witters DM (1980) A 2450 MHz slab loaded direct contact applicator with choke. IEEE Trans Microwave Theory Tech MTT 28: 1418–1422CrossRefGoogle Scholar
  133. Kapp DS, Fessenden P, Samulski TV, Bagshaw MA, Cox RS, Lee ER, Lohrbach AW, Meyer JL, Prionas SD (1988) Stanford University institutional report. Phase I evaluation of equipment for hyperthermia treatment of cancer. Int J Hyperthermia 4: 75–115PubMedCrossRefGoogle Scholar
  134. Kastner R, Mittra R (1983) A new stacked two-dimensional spectral iteration technique ( SIT) for analyzing microwave power deposition in biological media. IEEE Trans Microwave Theory Tech MTT 31: 898–904CrossRefGoogle Scholar
  135. Kato H, Ishida T (1983) A new inductive applicator for hyperthermia. J Microwave Power 18: 331–336Google Scholar
  136. Kato H, Ishida T (1987) Development of an agar phantom adaptable for simulation of various tissues in the range 5–40 MHz. Phys Med Biol 32: 221–226PubMedCrossRefGoogle Scholar
  137. Kato H, Hiraoka M, Nakajima T, Ishida T (1985) Deep-heating characteristics of an RF capacitive heating device. Int J Hyperthermia 1: 15–28PubMedCrossRefGoogle Scholar
  138. Kato K, Matsuda J, Saito Y, Yamashita T, Hashida I, Tomaru T, Uchida I, Onai Y (1988) Computer simulation of temperature distribution in human body heated by RF capacitive hyperthermia. In: Koga S (ed) Hyperthermic oncology in Japan ‘87. Imai, Yonago, Japan, pp 149–150Google Scholar
  139. King RWP, Smith GS (1981) Antennas in matter: fundamentals, theory and applications. MIT Press, CambridgeGoogle Scholar
  140. Keinstein BH (1987) Biological effects of nonionizing electromagnetic radiation — a digest of current literature (produced for Office of Naval Research). Information Ventures, PhiladelphiaGoogle Scholar
  141. Knoechel R (1983) Capabilities of multiapplicator systems for focused hyperthermia. IEEE Trans Microwave Theory Tech MTT 31: 70–73CrossRefGoogle Scholar
  142. Knudsen M, Hartmann U (1986) Optimal temperature control with phased array hyperthermia system. IEEE Trans Microwave Theory Tech MTT 34: 597–603CrossRefGoogle Scholar
  143. Koga S (ed) (1988) Hyperthermic oncology in Japan ‘87. Imai, Yonago, JapanGoogle Scholar
  144. Krusen FH, Herrick JF, Leden U, Wakim KG (1947) Preliminary report of experimental studies of the heating effect of microwaves (radar) in living tissue. Proc Staff Meet Mayo Clin 22: 209–224Google Scholar
  145. Lagendijk JJW (1983) A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia. J Microwave Power 18: 367–375Google Scholar
  146. Lagendijk JJW, Nilsson P (1985) Hyperthermia dough: a fat and bone equivalent phantom to test microwave/radiofrequency hyperthermia heating systems. Phys Med Biol 30: 709–712PubMedCrossRefGoogle Scholar
  147. Lau RWM (1986) Computer modelling: the design and evaluation of microwave and radiofrequency hyperthermia applicators. PhD thesis, University of LondonGoogle Scholar
  148. Lau RWM, Sheppard RJ (1986) The modelling of biological systems in three dimensions using the time domain finite-difference method. I. The implementation of the technique. Phys Med Biol 31: 1247–1256PubMedCrossRefGoogle Scholar
  149. Lau RWM, Sheppard RJ, Howard G, Bleehen NM (1986) The modelling of biological systems in three dimensions using the time domain finite difference method. II. The application and experimental evaluation of the method in hyperthermia applicator design. Phys Med Biol 31: 1257–1266PubMedCrossRefGoogle Scholar
  150. Leden UN, Herrick JF, Wakim KG, Krusen FH (1947) Preliminary studies on the heating and circulating effects of microwaves (radar). Br J Phys Med 10: 177–184PubMedGoogle Scholar
  151. Lee ER, Tarczy-Hornoch P, Fessenden P, Kapp D, Prionas S (1988) Scanning dipole antenna array applicator (Abstract Bc-6). In: Abstracts of 8th NAHG meeting, Philadelphia, April 1988. Radiation Research Society, Philadelphia, p 15Google Scholar
  152. Lehmann JF, McMillan JA, Brunner GD, Johnston VC (1962) Heating patterns produced in specimens by microwaves of the frequency 2456 MHz when applied by A, B and C directors. Arch Phys Med 43: 538–546PubMedGoogle Scholar
  153. Lehmann JF, Johnston VC, McMillan JA, Silverman DR, Brunner GD, Rathbun LA (1965) Comparison of deep heating by microwaves at frequencies 2456 and 900 megacycles. Arch Phys Med 46: 307–314PubMedGoogle Scholar
  154. Lehmann JF, Guy AW, deLateur BJ, Stonebridge JB, Warren CG (1968) Heating patterns produced by shortwave diathermy using helical induction coil applicators. Arch Phys Med 49: 193–198PubMedGoogle Scholar
  155. Lehmann JF, deLateur BJ, Stonebridge JB (1969) Selective muscle heating by shortwave diathermy with a helical coil. Arch Phys Med 50: 117–132PubMedGoogle Scholar
  156. Lehmann JF, Guy AW, Stonebridge JB, deLateur B (1978) Evaluation of a therapeutic direct-contact 915 MHz microwave applicator for effective deep heating in humans. IEEE Trans Microwave Theory Tech MTT 26: 556–563CrossRefGoogle Scholar
  157. Lehmann JF, Stonebridge JB, Wallace JE, Warren CG, Guy AW (1979) Microwave therapy: stray radiation, safety and effectiveness. Arch Phys Med Rehabil 60: 578–584PubMedGoogle Scholar
  158. Lehmann JF, McDougall JA, Guy AW, Chou CK, Esselman PC, Warren CG (1983) Electrical discontinuity of tissue substitute models at 27.12 MHz. Bioelectromagnetics 4: 257–265PubMedCrossRefGoogle Scholar
  159. Lerch IA, Kohn S (1983) Radiofrequency hyperthermia: the design of coil transducers for local heating. Int J Radiat Oncol Biol Phys 9: 939–948PubMedCrossRefGoogle Scholar
  160. Licht S (1965) History of therapeutic heat. In: Licht S (ed) Therapeutic heat and cold, 2nd edn. Licht, New Haven, pp 196–231Google Scholar
  161. Lin JC (1986) Engineering and biophysical aspects of microwave and radiofrequency radiation. In: Watmough DJ, Ross WM (eds) Hyperthermia. Blackie, Glasgow, pp 42–75Google Scholar
  162. Lin JC (ed) (1988) Electromagnetic interaction with biological systems. Plenum, New YorkGoogle Scholar
  163. Livesay DE, Chen K (1974) Electromagnetic fields induced inside arbitrary shaped biological bodies. IEEE Trans Microwave Theory Tech MTT 22: 1273–1280CrossRefGoogle Scholar
  164. Loane J, Ling H, Wang BF (1986) Experimental investigation of a retrofocusing microwave hyperthermia applicator: conjugate-field matching scheme. IEEE Trans Microwave Theory Tech MTT 34: 490–494CrossRefGoogle Scholar
  165. Lumori MLD (1988) Microwave power deposition in bounded and inhomogeneous lossy media. Ph D thesis, University of ArizonaGoogle Scholar
  166. Massoudi H, Durney CH, Iskander MF (1984) Limitations of the cubical block model of man in calculating SAR distributions. IEEE Trans Microwave Theory Tech MTT 32: 746–752CrossRefGoogle Scholar
  167. Marha K, Musil J, Tuha H (1971) Electromagnetic fields and the life environment. San Francisco Press, San FranciscoGoogle Scholar
  168. Matsuda T, Sugiyama A, Nakata Y (1984) Fundamental and clinical studies of radiofrequency hyperthermia and radiation therapy. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 349–352Google Scholar
  169. Melek M, Anderson AP (1981) A thinned cylindrical array for focused microwave hyperthermia. In: Proceedings of 11th European microwave conference. Microwave Exhibitions and Publishers, Tunbridge Wells, pp 427–432CrossRefGoogle Scholar
  170. Michaelson SM (1982) Bioeffects of high frequency currents and electromagnetic radiation. In: Lehmann JF (ed) Therapeutic heat and cold, 3rd edn. Williams and Wilkins, Baltimore, pp 278–352Google Scholar
  171. Mittlemann E, Osborne SL, Coulter JS (1941) Short wave diathermy power absorption and deep tissue temperature. Arch Phys Ther 22: 133–139Google Scholar
  172. Morand A, Bolomey JC (1987 a) A model for impedance determinations and power deposition characterization in three-electrode configurations for capacitive radio frequency hyperthermia — part A: impedance determinations. IEEE Trans Biomed Eng BME 34: 217–222CrossRefGoogle Scholar
  173. Morand A, Bolomey JC (1987b) A model for impedance determinations and power deposition characterization in three-electrode configurations for capacitive radio frequency hyperthermia — part B: current flow and power deposition. IEEE Trans Biomed Eng BME 34: 223–232CrossRefGoogle Scholar
  174. Morita N, Bach Andersen J (1982) Near field absorption in a circular cylinder from electric and magnetic line sources. Bioelectromagnetics 3: 253–274PubMedCrossRefGoogle Scholar
  175. Mortimer B, Oshborne SL (1935) Tissue heating by short wave diathermy. JAMA 104: 1413–1419Google Scholar
  176. Nagelschmidt F (1913) Lehrbuch der Diathermie. BerlinGoogle Scholar
  177. Nagelschmidt F (1928) Eine neue Methode der Wärme — Anwendung durch Diathermie. Dtsch Med Wochenschr 54: 2102–2104CrossRefGoogle Scholar
  178. NCRP (1981) Radiofrequency electromagnetic fields. Report no 67. National Council on Radiation Protection and Measurements, BethesdaGoogle Scholar
  179. NCRP (1986) Biological effects and exposure criteria for radiofrequency electromagnetic fields. Report no 86. National Council on Radiation Protection and Measurements, BethesdaGoogle Scholar
  180. Neymann CA (1934) Discussion. Arch Phys Ther X-Ray Radiat 15: 166Google Scholar
  181. Neymann CA (1938) Artificial fever. Balliere, Tindall and Cox, LondonGoogle Scholar
  182. Neymann CA, Osborne SL (1929) Artificial fever produced by high frequency currents. A preliminary report. Ill Med J 56: 199–203Google Scholar
  183. Nikawa Y, Kikuchi M, Mori S (1985) Development and testing of a 2450 MHz lens applicator. IEEE Trans Microwave Theory Tech MTT 33: 1212–1216CrossRefGoogle Scholar
  184. Nilsson P (1984) Physics and technique of microwave-induced hyperthermia in the treatment of malignant tumours. Ph D thesis, University of LundGoogle Scholar
  185. Nilsson P, Larsson T, Persson B (1985) Absorbed power distributions from two tilted waveguide applicators. Int J Hyperthermia 1: 29–43PubMedCrossRefGoogle Scholar
  186. NRPB (1986) Advice on the protection of workers and members of the public from the possible hazards of electric and magnetic fields with frequencies below 300 GHz: a consultative document. National Radiological Protection Board, Didcot, UKGoogle Scholar
  187. Nussbaum GH, Sidi J, Rouhanizadeh N, Morel P, Jasmin C, Convert G, Mabire JP, Azam G (1986) Manipulation of central axis heating patterns with a prototype, three-electrode capacitive device for deep-tumor hyperthermia. IEEE Trans Microwave Theory Tech MTT 34: 620–625CrossRefGoogle Scholar
  188. Ohguchi Y, Tsutsumi S (1988) A CAD system of hyperthermia and its application to RF capacitive type heating of upper abdomen. In: Koga S (ed) Hyperthermic oncology in Japan ‘87. Imai, Yonago, Japan, pp 143–144Google Scholar
  189. Oleson JR (1984) A review of magnetic induction methods for hyperthermia treatment of cancer. IEEE Trans Biomed Eng BME 31: 91–97CrossRefGoogle Scholar
  190. Oleson JR, Cetas TC (1982) Clinical hyperthermia with RF currents. In: Nussbaum GH (ed) Physical aspects of hyperthermia. American Institute of Physics, New York, pp 280–306Google Scholar
  191. Oleson JR, Cetas TC, Corry PM (1983a) Hyperthermia by magnetic induction: experimental and theoretical results for coaxial coil pairs. Radiat Res 95: 175–186CrossRefGoogle Scholar
  192. Oleson JR, Heusenkveld RS, Manning MR (1983 b) Hyperthermia by magnetic induction: clinical experience with concentric electrodes. Int J Radiat Oncol Biol Phys 9: 549–556CrossRefGoogle Scholar
  193. Oleson JR, Sim DA, Conrad J, Fletcher AM, Gross EJ (1986) Results of a phase I regional hyperthermia device evaluation: microwave annular array versus radiofrequency induction coil. Int J Hyperthermia 2: 327–336PubMedCrossRefGoogle Scholar
  194. Osepchuk J (ed) (1983) Biological effects of electromagnetic radiation. IEEE, New YorkGoogle Scholar
  195. Overmyer KM, Pearce JA, DeWitt DP (1979) Measurements of temperature distributions at electrosurgical dispersive electrode sites. Trans ASME J Biomech Eng 101: 66–72CrossRefGoogle Scholar
  196. Paglione R, Sterzer F, Mendecki J, Friedenthal E, Botstein C (1981) 27 MHz ridged waveguide applicators for localised hyperthermia treatment of deep seated malignant tumours. Microwave J 24: 71–80Google Scholar
  197. Paulsen KD (1989) Calculation of power deposition patterns in hyperthermia. In: Gautherie M (ed) Thermal modeling and thermal dosimetry. Springer, Berlin Heidelberg New York (Clinical thermology, vol 5 )Google Scholar
  198. Paulsen KD, Strohbehn JW, Hill SC, Lynch DR, Kennedy FE (1984 a) Theoretical temperature profiles for concentric coil induction heating devices in a two-dimensional axi-symmetric, inhomogeneous patient model. Int J Radiat Oncol Biol Phys 10: 1095–1107CrossRefGoogle Scholar
  199. Paulsen KD, Strohbehn JW, Lynch DR (1984b) Theoretical temperature distributions produced by an annular phased array type system in CT-based patient models. Radiat Res 100: 536–552PubMedCrossRefGoogle Scholar
  200. Paulsen KD, Strohbehn JW, Lynch DR (1985) Comparative theoretical performance for two types of regional hyperthermia systems. Int J Radiat Oncol Biol Phys 11: 1659–1671PubMedCrossRefGoogle Scholar
  201. Paulsen KD, Lynch DR, Strohbehn JW (1988a) Three-dimensional finite, boundary, and hybrid element solutions of the Maxwell equations for lossy dielectric media. IEEE Trans Microwave Theory Tech MTT 36: 682–693CrossRefGoogle Scholar
  202. Paulsen KD, Strohbehn JW, Lynch DR (1988b) Theoretical electric field distributions produced by three types of regional hyperthermia devices in a three-dimensional homogeneous model of man. IEEE Trans Biomed Eng BME 35: 36–45CrossRefGoogle Scholar
  203. Plancot M (1983) Contribution à l’étude théorique, expérimentale et clinique de l’hyperthermie microonde controlée par radiométrie microonde. Thesis, University of Science and Technology, LilleGoogle Scholar
  204. Presman AS (1970) Electromagnetic fields and life. Plenum, New YorkGoogle Scholar
  205. Rasmark P, Bach Andersen J (1984) Focused electromagnetic heating of muscle tissue. IEEE Trans Microwave Theory Tech MTT 32: 887–888CrossRefGoogle Scholar
  206. Robillard M, N’Guyen DD, Chive M, Leroy Y, Audet J, Bolomey JC, Pichot C (1980) Profondeur de pénétration et résolution spatiale de sondes atraumatiques utilisées en microondes. In: Berteaud AJ, Servantie B (eds) Proceedings URSI symposium Ondes electromagnétiques et biologie, Jouy-en-Josas, July 1980. URSI, CNFRS, Thiais, pp 213–217Google Scholar
  207. Roemer RB (1988) Heat transfer in hyperthermia treatments: basic principles and applications. In: Paliwal B (ed) Proceedings of 1987 American Association of Physicists in Medicine summer school on physical aspects of hyperthermia. American Institute of Physics, New York, pp 210–242Google Scholar
  208. Ruggera PS (1980) Measurement of emission levels during microwave and shortwave diathermy treatments. HHS publication (FDA) 80–8119. United States Department of Health and Human Services. Bureau of Radiological Health, Rockville, MDGoogle Scholar
  209. Ruggera PS, Kantor G (1984) Development of a family of RF helical coil applicators which produce transversely uniform axially distributed heating in cylindrical fat-muscle phantoms. IEEE Trans Biomed Eng BME 31: 98–106CrossRefGoogle Scholar
  210. Ryan TP, Coughlin CT, Strohbehn JW (1988) SAR evaluation of three spiral applicator designs for 433 MHz microwave hyperthermia with clinical temperature correlation (Abstract Bc-7). In: Abstracts 8th NAHG meeting, Philadelphia, April 1988. Radiation Research Society, Philadelphia, p 15Google Scholar
  211. Samulski TV, Kapp DS, Fessenden P, Lohrback A (1987) Heating deep seated eccentrially located tumors with an annular phased array system: a comparative clinical study using two annular array operating configurations. Int J Radiat Oncol Biol Phys 13: 83–94PubMedGoogle Scholar
  212. Sandhu TS, Kolozsvary A (1984) Conformal hyperthermia applicators. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 675–678Google Scholar
  213. Sapozink MD, Gibbs FA, Gates KS, Stewart JR (1984) Regional hyperthermia in the treatment of clinically advanced, deep seated malignancy: results of a pilot study employing and annular array applicator. Int J Radiat Oncol Biol Phys 10: 775–786PubMedCrossRefGoogle Scholar
  214. Sapozink MD, Gibbs FA, Thomson JW, Stewart JR (1985) A comparison of deep regional hyperthermia from an annular phased array and a concentric coil in the same patients. Int J Radiat Oncol Biol Phys 11: 179–190PubMedCrossRefGoogle Scholar
  215. Sapozink MD, Gibbs FA, Egger MJ, Stewart JR (1986) Abdominal regional hyperthermia with an annular phased array. J Clin Oncol 4: 775–783PubMedGoogle Scholar
  216. Sapozink MD, Gibbs FA, Gibbs P, Stewart JR (1988) Phase I evaluation of hyperthermia equipment — University of Utah institutional report. Int J Hyperthermia 4: 117–132PubMedCrossRefGoogle Scholar
  217. Sathiaseelan V, Iskander MF, Howard GCW, Bleehen NM (1986) Theoretical analysis and clinical demonstration of the effect of power control using the annular phased-array hyperthermia system. IEEE Trans Microwave Theory Tech MTT 34: 514–519CrossRefGoogle Scholar
  218. Schaubert DH (1984) Electromagnetic heating of tissue-equivalent phantoms with thin, insulating partitions. Bioelectromagnetics 5: 221–232PubMedCrossRefGoogle Scholar
  219. Schereschewsky JW (1928) The action of currents of very high frequency upon tissues and cells. A: upon a transplantable mouse sarcoma. Public Health Rep 43: 927–939Google Scholar
  220. Schereschewsky JW (1933) Biological effects of very high frequency electro-magnetic radiation. Radiology 20: 246–253Google Scholar
  221. Schliephake E (1935) Short-wave diathermy. Actinic, LondonGoogle Scholar
  222. Schwan HP (1957) Electrical properties of tissues and cells. Adv Biol Med Phys 5: 147–209PubMedGoogle Scholar
  223. Schwan HP (1959) Alternating current spectroscopy of biological substances. Proc IRE 47: 1841–1855CrossRefGoogle Scholar
  224. Sedillot C (1853) Traite de médécine opératoire. ParisGoogle Scholar
  225. Seguin H (1983) Progress in standardisation in the field of microwaves and radiowaves by the commission and member states of the European Community. Commission of the European Communities, document no 3501/EN. CEC, LuxembourgGoogle Scholar
  226. Sekins KM, Emery AF (1982) Thermal science for physical medicine. In: Lehmann JF (ed) Therapeutic heat and cold, 3rd edn. Williams and Wilkins, Baltimore, pp 70–132Google Scholar
  227. Shimm DS, Cetas TC, Oleson JR, Cassady JR, Sim DA (1988) Clinical evaluation of hyperthermia equipment: the University of Arizona institutional report for the NCI hyperthermia equipment evaluation contract. Int J Hyperthermia 4: 39–51PubMedCrossRefGoogle Scholar
  228. Skolnik MI, King DD (1964) Self-phasing array antennas. IEEE Trans Antennas Propag AP 12: 142–149CrossRefGoogle Scholar
  229. Sliney DH, Wolbarsht ML, Muc AM (1985) Differing radiofrequency standards in the microwave region — implications for future research. Health Phys 49: 677–683PubMedGoogle Scholar
  230. Soiland A (1928) Thermogenesis by radiofrequency currents. Acta Radiol 9: 474–477CrossRefGoogle Scholar
  231. Song CW, Rhee JG, Lee KKL, Levitt SH (1986) Capacitive heating of phantom and human tumors with an 8 MHz radiofrequency applicator (Thermotron RF-8). Int J Radiat Oncol Biol Phys 12: 365–372PubMedCrossRefGoogle Scholar
  232. Spiegel RJ (1984) A review of numerical models for predicting the energy deposition and resultant thermal response of humans exposed to electromagnetic fields. IEEE Trans Microwave Theory Tech MTT 32: 730–746CrossRefGoogle Scholar
  233. Stauffer PR, Hevezi JM (1982) Possible hazards of patient anaesthesia during hyperthermia therapy. Int J Radiat On-col Biol Phys 8: 1077CrossRefGoogle Scholar
  234. Storm FK, Harrison WH, Elliott RS, Kaiser LR, Silberman AW, Morton DL (1981) Clinical radiofrequency hyperthermia by magnetic loop induction. J Microwave Power 16: 179–184Google Scholar
  235. Sratton JA (1941) Electromagnetic theory. McGraw-Hill, New York, chap 9Google Scholar
  236. Strohbehn JW, Paulsen KD, Lynch DR (1986) Use of the finite element method in computerized thermal dosimetry. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies, Letchworth, pp 383–451Google Scholar
  237. Stuchly MA, Repacholi MH, Lecuyer DW, Mann RD (1982) Exposure to the operator and patient during short wave diathermy treatments. Health Phys 42: 341–366PubMedCrossRefGoogle Scholar
  238. Stuchly MA, Repacholi MH, Lecuyer DW (1983) Operator exposure to radiofrequency fields near a hyperthermia device. Health Phys 45: 101–107PubMedCrossRefGoogle Scholar
  239. Stuchly SS (ed) (1979) Symposium on electromagnetic fields in biology. International Microwave Power Institute, Edmonton, CanadaGoogle Scholar
  240. Sullivan DM, Borup DT, Gandhi OP (1987) Use of the finitedifference-time-domain method in calculating-EM absorption in human tissues. IEEE Trans Biomed Eng BME 34: 148–157CrossRefGoogle Scholar
  241. Sullivan DM, Gandhi OP, Taflove A (1988) Use of the finite-difference time domain method for calculating EM absorption in man models. IEEE Trans Biomed Eng BME 35: 179–186CrossRefGoogle Scholar
  242. Sultran MF, Mittra R (1985) An iterative moment method for analyzing the electromagnetic field distribution inside in-homogeneous lossy dielectric objects. IEEE Trans Microwave Theory Tech MTT 33: 163–168CrossRefGoogle Scholar
  243. Taflove A, Brodwin ME (1975a) Numerical solution of steady state electromagnetic problems using the time-dependent Maxwell’s equations. IEEE Trans Microwave Theory Tech MTT 23: 623–630CrossRefGoogle Scholar
  244. Taflove A, Brodwin ME (1975b) Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye. IEEE Trans Microwave Theory Tech MTT 23: 888–896CrossRefGoogle Scholar
  245. Takahashi Y, Nikawa Y, Mori S, Nakagawa M, Kikuchi M (1985) Electromagnetic field convergent applicator for microwave hyperthermia at 433 MHz. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia and cancer therapy. Mag Bros, Tokyo, pp 132–133Google Scholar
  246. Tanabe E, McEuen AH, Norris CS, Fessenden P, Samulski TV (1983) A multielement microstrip antenna for local hyperthermia. In: IEEE MTT-S International microwave symposium digest (IEEE 83 CH 1871–3). IEEE, New York, pp 183–185Google Scholar
  247. Tofani S, Agnesod G (1984) The assessment of unwanted radiation around diathermy RF capacitive applicators. Health Phys 47: 235–241PubMedCrossRefGoogle Scholar
  248. Tsai CT, Massoudi H, Durney CH, Iskander MF (1986) A procedure for calculating fields inside arbitrarily shaped, in-homogeneous dielectric bodies using linear basis functions with the moment method. IEEE Trans Microwave Theory Tech MTT 34: 1131–1139CrossRefGoogle Scholar
  249. Turner PF (1983) Electromagnetic hyperthermia devices and methods. MS Thesis, University of Utah, Salt Lake City, Chap 2Google Scholar
  250. Turner PF (1984a) Hyperthermia and inhomogeneous tissue effects using an annular phased array. IEEE Trans Microwave Theory Tech MTT 32: 874–882CrossRefGoogle Scholar
  251. Turner PF (1984b) Regional hyperthermia with an annular phased array. IEEE Trans Biomed Eng BME 31: 106–114CrossRefGoogle Scholar
  252. Turner PF (1986) Mini-annular phased array for limb hyperthermia. IEEE Trans Microwave Theory Tech MTT 34: 508–513CrossRefGoogle Scholar
  253. Turner PF (1988) Operational and clinical aspects of the BSD-2000. Proceedings of Essen University and BSD Medical Corporation symposium, Essen, April 1988Google Scholar
  254. Turner PF, Kumar L (1982) Computer solution for applicator heating pattern. NCI Monogr 61: 521–523Google Scholar
  255. USSR (1976) Occupational safety standards system. Electromagnetic fields of radiofrequency. General safety requirements. GOST Standard 12.1. 006–76. Gosudarstvennyii Komitet Standardov Sovieta Ministriv USSR, MoscowGoogle Scholar
  256. USSR (1984) Occupational safety standards system. Electromagnetic fields of radiofrequency, permissible levels in work places and requirements for control. GOST Standard 12.1. 006–84. Gosudarstvennyii Komitet Standardov Sovieta Ministriv USSR, MoscowGoogle Scholar
  257. van den Berg PM (1984) Iterative computational techniques in scattering based upon the integrated square error criterion. IEEE Trans Antennas Propag AP 32: 1063–1071CrossRefGoogle Scholar
  258. van den Berg PM, de Hoop AT, Segal A, Praagman N (1983) The computational model of the electromagnetic heating of biological tissue with application to hyperthermic cancer therapy. IEEE Trans Biomed Eng BME 30: 797–805Google Scholar
  259. van Koughnett AL, Wyslouzil W (1972) A waveguide TEM mode exposure chamber. J Microwave Power 7: 381–383Google Scholar
  260. van Putten MHPM, van den Berg PM (1986) A three-dimensional model for the ‘coaxial TEM’ deep body hyperthermia applicator. Int J Hyperthermia 2: 243–252PubMedCrossRefGoogle Scholar
  261. van Rhoon GC, Visser AG, van den Berg PM, Reinhold HS (1984) Temperature depth profiles obtained in muscle equivalent phantoms using the RCA 27 MHz ridged waveguide. In: Overgaard J (ed) Hyperthermic oncology 1984 vol 1. Taylor and Francis, London, pp 499–502Google Scholar
  262. van Rhoon GC, Visser AG, van den Berg PM, Reinhold HS (1988) Evaluation of ring capacitor plates for regional deep heating. Int J Hyperthermia 4: 133–142PubMedCrossRefGoogle Scholar
  263. Vaughan R, Bach Andersen J (1985) Polarization properties of the helix antenna IEEE Trans Antennas Propag AP 33: 10–20CrossRefGoogle Scholar
  264. Visser AG, van Rhoon GC, van den Berg PM, Reinhold HS (1987) Evaluation of calculated temperature distributions for a 27 MHz ridged waveguide used in localized deep hyperthermia. Int J Hyperthermia 3: 245–256PubMedCrossRefGoogle Scholar
  265. von Ardenne M, von Ardenne T, Bohme G, Reitnauer PG (1977) Selektive Lokalhyperthermie der Krebsgewebe. Homogenisierte Energiezufuhr auch in tief liegende Gewebe der Hochleistungs-Dekawellen-Spulenfeld +Rasterbewegung des Doppelsystems. Arch Geschwulstforsch 47: 487–523Google Scholar
  266. von Zeynek RR, von Bernd E, von Preyss W (1908) Über Ther- mopenetration. Wien Klin Wochenschr 21: 517–520Google Scholar
  267. Wait JR (1959) Electromagnetic radiation from cylindrical structures. Pergamon, LondonGoogle Scholar
  268. Wait JR (1985) Focused heating in cylindrical targets: part I. IEEE Trans Microwave Theory Tech MTT 33: 647–649CrossRefGoogle Scholar
  269. Wait JR (1986) Analysis of the radiation leakage for a four-aperture phased array applicator in hyperthermia therapy. IEEE Trans Microwave Theory Tech MTT 34: 531–541Google Scholar
  270. Wait JR, Lumori MLD (1986) Focussed heating in cylindrical targets: part II. IEEE Trans Microwave Theory Tech MTT 34: 357–359CrossRefGoogle Scholar
  271. Wang CQ, Gandhi OP (1989) Numerical simulation of annular phased arrays for anatomically based models using the FDTD method. IEEE Trans Microwave Theory Tech. MTT 37: 118–126CrossRefGoogle Scholar
  272. Wiley JD, Webster JG (1982) Analysis and control of the current distribution under circular dispersive electrodes. IEEE Trans Biomed Eng BME 29: 381–385CrossRefGoogle Scholar
  273. Wilsey TR, McEuen AH, Fessenen P, Lee ER, Tanabe E, Nelson LV, Schlitter RC, Kapp DS (1988) Arm cuff microwave microstrip array applicator (Abstract Bc-5). In: Abstracts for 8th NAHG meeting, Philadelphia, April 1988. Radiation Research Society, Philadelphia, p 15Google Scholar
  274. Wong TZ, Strohbehn JW, Douple EB (1985) Automated measurement of power deposition patterns from interstitial microwave antennas used in hyperthermia. In: Kuklinski WS, Ohley WJ (eds) Proceedings 11th Northeast Bioengineering Conference. IEEE, New York, pp 58–61Google Scholar
  275. Yamashita E, Mittra R (1968) Variational method for the analysis of microstrip lines. IEEE Trans Microwave Theory Tech MTT 16: 251–256CrossRefGoogle Scholar
  276. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag AP 17: 585–589Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. W. Hand

There are no affiliations available

Personalised recommendations