Cell Lineage Specificity of Chromatin Configuration and Gene Expression in Haemopoietic Progenitor Cells

  • A. M. Ford
  • L. E. Healy
  • S. M. Watt
  • E. Spooncer
  • T. M. Dexter
  • H. V. Molgaard
  • M. F. Greaves
Conference paper
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 32)


Haemopoietic stem cells have the potential to activate up to eight distinct cell lineage specific genetic programmes [1]. The mechanisms of cell lineage choice or commitment are fundamental to developmental biology in general and are beginning to be unravelled at least in invertebrates (e.g., Drosophila, Nematodes, slime moulds). Transacting DNA binding proteins that directly or indirectly regulate gene transcription are central players in the game [2], as are inductive cellular interactions [3]. In haemopoietic differentiation, it is clear that selective progenitor-stromal cell interactions involving both adhesive and growth factor recognition [4–7] are playing a role in early decision-making but the basic mechanisms whereby uni-lineage adoption is made are still obscure.


Cell Lineage Choice Haemopoietic Stem Cell Distinct Cell Lineage Haemopoietic Progenitor Cell Lineage Specific Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Metcalf D, Moore MAS (1971) Haemopoietic cells. North-Holland, Amsterdam, p 45Google Scholar
  2. 2.
    Maniatis T, Goodbourn S, Fischer JA (1987) Regulation of inducible and tissue- specific gene expression. Science 236: 1237PubMedCrossRefGoogle Scholar
  3. 3.
    Harland R (1988) Growth factors and mesoderm induction. Trends Genet 4: 62–63PubMedCrossRefGoogle Scholar
  4. 4.
    Dexter TM (1982) Stromal cell associated haemopoiesis. J Cell Physiol [Suppl] 1: 87–94CrossRefGoogle Scholar
  5. 5.
    Gordon MY, Riley GP, Watt SM, Greaves MF (1987) Compartmentalization of a haemopoietie growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature 326: 403–405PubMedCrossRefGoogle Scholar
  6. 6.
    Roberts R, Gallagher J, Spooncer E, Allen TD, Bloomfield F, Dexter TM (1988) Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 332: 376–378PubMedCrossRefGoogle Scholar
  7. 7.
    Sieff CA (1987) Hematopoietic growth factors. J Clin Invest 79: 1549–1557PubMedCrossRefGoogle Scholar
  8. 8.
    Mathis D, Oudet P, Chambon P (1980) Structure of transcribing chromatin. Prog Nucleic Acid Res Mol Biol 24: 1–55PubMedCrossRefGoogle Scholar
  9. 9.
    Burch JBE, Weintraub H (1983) Temporal order of chromatin structural changes associated with activation of the major chicken vitellogenin gene. Cell 33: 65–76PubMedCrossRefGoogle Scholar
  10. 10.
    Elgin SCR (1981) DNAase I-hypersensitive sites of chromatin. Cell 27: 413–415PubMedCrossRefGoogle Scholar
  11. 11.
    Lassar AB, Paterson BM, Weintraub H (1986) Transfection of a DNA locus that mediates the conversion of 10T1/2 fibro-blasts to myoblasts. Cell 47: 649–656PubMedCrossRefGoogle Scholar
  12. 12.
    Pinney DF, Pearson-White SH, Konieczny SF, Latham KE, Emerson CP (1988) Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell 53: 781–793PubMedCrossRefGoogle Scholar
  13. 13.
    Alt FW, Blackwell TK, De Pinho RA, Reth MG, Yancopoulos GD (1986) Regulation of genome rearrangement events during lymphocyte differentiation. Immunol Rev 89: 5–30PubMedCrossRefGoogle Scholar
  14. 14.
    Marrack P, Kappler J (1987) The T cell receptor. Science 238: 1073–1079PubMedCrossRefGoogle Scholar
  15. 15.
    Ford AM, Watt SM, Furley AJW, Molgaard HV, Greaves MF (1988) Cell lineage specificity of chromatin configuration around the immunoglobulin heavy chain enhancer. EMBO J 7: 2393–2399PubMedGoogle Scholar
  16. 16.
    Furley AJ, Reeves BR, Mizutani S, Altass LJ, Watt SM, Jacob MC, van den Elsen P, Terhorst C, Greaves MF (1986) Divergent molecular phenotypes of KG1 and KG la myeloid cell lines. Blood 68: 1101–1107PubMedGoogle Scholar
  17. 17.
    Spooncer E, Boettiger D, Dexter TM (1984) Continuous in vitro generation of multipotential stem cell clones from src- infected cultures. Nature 310: 228–230PubMedCrossRefGoogle Scholar
  18. 18.
    Spooncer E, Heyworth CM, Dunn A, Dexter TM (1986) Self-renewal and differentiation of interleukin-3-dependent multipotent stem cells are modulated by stromal cells and serum factors. Differentiation 31: 111–118PubMedCrossRefGoogle Scholar
  19. 19.
    Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient ( Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326: 292–295PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17: 771–779PubMedCrossRefGoogle Scholar
  21. 21.
    Greaves MF, Chan LC, Furley AJW, Watt SM, Molgaard HV (1986) Lineage promiscuity in hemopoietic differentiation and leukemia. Blood 67: 1–11PubMedGoogle Scholar
  22. 22.
    Klinken SP, Alexander WS, Adams JM (1988) Hemopoietic lineage switch: v-raf oncogene converts Eµ-myc transgenic B cells into macrophages. Cell 53: 857–867PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • A. M. Ford
    • 1
  • L. E. Healy
    • 1
  • S. M. Watt
    • 1
  • E. Spooncer
    • 2
  • T. M. Dexter
    • 2
  • H. V. Molgaard
    • 1
  • M. F. Greaves
    • 1
  1. 1.Leukaemia Research Fund Centre, Chester Beatty LaboratoriesInstitute of Cancer ResearchLondonUK
  2. 2.Paterson LaboratoriesChristie Hospital and Holt Radium InstituteWithington, ManchesterUK

Personalised recommendations