Advertisement

Induction of Nonspecific Cell-Mediated Cytotoxicity: A Multisignal Event and its Cellular Regulation

  • J. Atzpodien
  • C. Bührer
  • S. C. Gulati
  • D. Wisniewski
  • S. Öz
  • H. Kirchner
  • T. Benter
  • H. Poliwoda
  • K. Welte
  • B. Clarkson
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 32)

Abstract

Nonspecific cytotoxic cells provide a major line of defense against tumor. While natural killer (NK) cells display spontaneous, non-MHC-restricted killing activity, both NK and non-NK lymphocytes can be induced by lymphokines to exhibit enhanced nonspecific cytotoxicity against tumor, including NK-resistant targets [1–3]. The latter activity is mediated by a heterogeneous cell population commonly termed lymphokine-activated killer (LAK) cells [2–4]. According to the initial concept, nonspecific LAK killing is generated via exposure to interleukin 2 (IL-2) of peripheral blood lymphocytes [5, 6]. Most of the LAK activity appears to be mediated by NK cells stimulated with IL-2; however, recent studies suggest that induction of MHC-unrestricted lymphokine-activated killing is a more complex phenomenon requiring a multitude of cellular and noncellular signals [2–4, 7-10].

Keywords

Natural Killer Natural Killer Cell Nonspecific Cytotoxicity Isolate Natural Killer Cell Nonspecific Cytotoxic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ortaldo JR, Reynolds CW (1987) Natural killer activity: definition of a function rather than a cell type. J Immunol 138: 4545PubMedGoogle Scholar
  2. 2.
    Phillips JH, Lanier LL (1986) Dissection of the lymphokine activated killer phenomenon. J Exp Med 164: 814–825PubMedCrossRefGoogle Scholar
  3. 3.
    Ortaldo JR, Mason A, Overton R (1986) Lymphokine-activated killer cells. Analysis of progenitors and effectors. J Exp Med 164: 1193–1205PubMedCrossRefGoogle Scholar
  4. 4.
    Lotzovâ E, Herberman RB (1987) Re-assessment of LAK phenomenology: a review. Nat Immun Cell Growth Regul 6: 109–115PubMedGoogle Scholar
  5. 5.
    Lotze MT, Grimm EA, Mazumder A, Strausser JL, Rosenberg SA (1981) Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res 41: 44210–4425Google Scholar
  6. 6.
    Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA (1982) Lymphokine-activated killer cell phenomenon: lysis of natural killer resistant fresh solid tumor cells by interleukin-2 activated autologous human peripheral blood lymphocytes. J Exp Med 155: 1823–1841PubMedCrossRefGoogle Scholar
  7. 7.
    Talmadge JE, Wiltrout RH, Counts DF, Herberman RB, McDonald T, Ortaldo JR (1986) Proliferation of human peripheral blood lymphocytes induced by recombinant human interleukin-2: contribution of large granular lymphocytes and T lymphocytes. Cell Immunol 102: 261–272PubMedCrossRefGoogle Scholar
  8. 8.
    Roberts K, Lotze MT, Rosenberg SA (1987) Separation and functional studies of the human lymphokine-activated killer cell. Cancer Res 57: 4366–4371Google Scholar
  9. 9.
    McMannis JD, Fisher RI, Creekmore SP, Braun DP, Harris JE, Ellis TM (1988) In vivo effects of recombinant IL-2.1. Isolation of circulating Leu-19+ lymphokine-activated killer effector cells from cancer patients receiving recombinant IL-2. J Immunol 140: 1335–1340PubMedGoogle Scholar
  10. 10.
    Grossman Z, Herberman RB (1986) Natural killer cells and their relationship to T-cells: hypothesis on the role of T-cell receptor gene rearrangement on the course of adaptive differentiation. Cancer Res 46: 2651–2658PubMedGoogle Scholar
  11. 11.
    Knowles RW (1986) Immunochemical analysis of the T cell-specific antigens. In: Reinherz ER, Haynes BF, Nadler LM, Bernstein ID (eds) Human T lymphocytes. Springer, Berlin Heidelberg New York, pp 259–287Google Scholar
  12. 12.
    Kung PC, Goldstein G, Reinherz EL, Schlossman SF (1979) Monoclonal anti-bodies defining distinctive human T cell surface antigens. Science 206: 347–349PubMedCrossRefGoogle Scholar
  13. 13.
    Stashenko P, Nadler LM, Hardy R, Schlossman SF (1980) Characterization of a human B lymphocyte-specific antigen. J Immunol 125: 1678–1685PubMedGoogle Scholar
  14. 14.
    Nadler LM, Anderson KL, Marti G, Bates M, Park E, Daley JF, Schlossman SF (1983) B4, a human B lymphocyte-associated antigen expressed on normal, mitogen-activated, and malignant B lymphocytes. J Immunol 131: 244–250PubMedGoogle Scholar
  15. 15.
    Griffin JD, Ritz J, Nadler LM, Schlossman SF (1981) Expression of myeloid differentiation antigens on normal and malignant myeloid cells. J Clin Invest 68: 932–941PubMedCrossRefGoogle Scholar
  16. 16.
    Todd RF, Nadler LM, Schlossman SF (1981) Antigens on human monocytes by monoclonal antibodies. J Immunol 126: 1435–1442PubMedGoogle Scholar
  17. 17.
    Griffin JD, Hercend T, Beveridge R, Schlossman SF (1983) Characterization of an antigen expressed by human natural killer cells. J Immunol 130: 2947–2951PubMedGoogle Scholar
  18. 18.
    Bai Y, Beverly PCL, Knowles RW, Bodmer WF (1983) Two monoclonal antibodies identifying a subset of human peripheral blood mononuclear cells with NK and K cell activity. Eur J Immunol 13: 521–527PubMedCrossRefGoogle Scholar
  19. 19.
    Wysocki LJ, Sato VL (1978) Panning for lymphocytes: a method for cell selection. Proc Natl Acad Sci USA 75: 2844–2848PubMedCrossRefGoogle Scholar
  20. 20.
    Wisniewski D, Strife A, Wachter M, Clarkson B (1985) Regulation of human peripheral blood erythroid burst-forming unit growth by T lymphocytes and T lymphocyte subpopulations defined by OKT4 and OKT8 monoclonal antibodies. Blood 65: 456–463PubMedGoogle Scholar
  21. 21.
    Atzpodien J, Gulati SC, Shimazaki C, Buhrer C, Oz S, Kwon JH, Kolitz JE, Clarkson BD (1988) Ewing’s sarcoma: ex-vivo sensitivity towards natural (NK) and lymphokine-activated (LAK) killing. Oncology 45: 437–443PubMedCrossRefGoogle Scholar
  22. 22.
    Thiele DL, Lipsky PE (1986) Leu-leuome sensitivity of human activated killer cells: delineation of a distinct class of cytotoxic T lymphocytes capable of lysing tumor targets. J Immunol 137: 1399–1406PubMedGoogle Scholar
  23. 23.
    Goding JM (1976) The chromic chloride method of coupling antigens to erythrocyte: definition of some important parameters. J Immunol Methods 10: 61–66PubMedCrossRefGoogle Scholar
  24. 24.
    Herzenberg LA, Herzenberg LA (1977) Analysis and separation using the fluorescence activated cell sorten (FACS) In: Weir EM (ed) Handbook of experimental immunology. Blackwell, Oxford, pp 22.1–22.21Google Scholar
  25. 25.
    Pross HF, Maroun JA (1984) The standardization of NK cell assays for use in studies of biological response modifiers. J Immunol Methods 68: 235–249PubMedCrossRefGoogle Scholar
  26. 26.
    Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome. Blood 45: 321–334PubMedGoogle Scholar
  27. 27.
    Klein E, Klein G, Nadkarni JS, Nadkarni JJ, Wigzell H, Clifford P (1968) Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture lines. Cancer Res 28: 13010–1310Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. Atzpodien
    • 1
  • C. Bührer
    • 2
  • S. C. Gulati
    • 3
  • D. Wisniewski
    • 3
  • S. Öz
    • 2
  • H. Kirchner
    • 1
  • T. Benter
    • 1
  • H. Poliwoda
    • 1
  • K. Welte
    • 2
  • B. Clarkson
    • 3
  1. 1.Department of Hematology and OncologyMedizinische Hochschule HannoverHannover 61Germany
  2. 2.Department of Pediatric Hematology and OncologyMedizinische Hochschule HannoverHannover 61Germany
  3. 3.Laboratory of Hematopietic Cell Kinetics, and Hematology/Lymphoma ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations