Skip to main content

Nucleation and Aggregation of Cholesterol Crystals in the Early Phase of Gallstone Genesis

  • Conference paper
Gallstone Disease
  • 133 Accesses

Abstract

Lipid composition does not seem to be a good criteria for discriminating between the bile of healthy subjects and that of patients with cholesterol gallstones (Table 1). About 30%–70% of healthy persons have bile supersaturated in cholesterol [37] and transported in varying proportions as mixed micelles (completely saturated only with cholesterol or 50% saturated with lecithin) and vesicles [60] having a larger size and greater ratio of cholesterol to phospholipids (Ch/PL ratio) than micelles [77]. Mixed micelles are frequently metastable, i.e., in a state of incomplete and unstable crystallinity which can drop to a lower free-energy level over time with the formation of different phases [76]. Vesicles have a greater cholesterol-solubilizing capacity (Ch/PL molar ratio approximately 1) than mixed micelles and can remain stable for a long time [18]. Therefore bile, like other biological systems, is thermodynamically unstable until its free energy reaches the minimum [29].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson JJ, Shamoo AE (1979) Anionic detergents as divalent cation ionophores across black lipid membranes. J Membr Biol 50: 241–255

    Article  PubMed  CAS  Google Scholar 

  2. Ahlberg J, Angelin B, Einarsson K (1980) Biliary lipid composition in normo- and hyperlipoproteinemia. Gastroenterology 79: 90–94

    PubMed  CAS  Google Scholar 

  3. Alvisi V, Bigi A, Marchetti F, Pazzi P, Roversi N (1988) Structural and chemical characterization of gallstones resistant to dissolution therapy. J Inorg Biochem 3: 109–116

    Article  Google Scholar 

  4. Armstrong MJ, Carey MC (1982) The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. J Lipid Res 23: 70–80

    PubMed  CAS  Google Scholar 

  5. Attenbach C, Seeling J (1984) Ca2+ binding to phosphatidylcholine bilayers as studied by deuterium magnetic resonance. Evidence for the formation of a Ca2+ complex with two phospholipid molecules. Biochemistry 23: 3913–3920

    Article  Google Scholar 

  6. Austgen M, Ferber E, Trendelenburg F (1983) Die Phospholipide im Sekret der zentralen Atemwege. Prax Klin Pneumol 37: 751–752

    PubMed  Google Scholar 

  7. Bakan DA, Barnhart JL (1988) Determination of parameters affecting proton relaxation of hepatic and gallbladder biles in dogs. Hepatology 8: 341–346

    Article  PubMed  CAS  Google Scholar 

  8. Barone JP, Svrjcek D, Nancollas GH (1983) The crystal growth of barium fluoride in aqueous solutions. J Crystal Growth 62: 27–33

    Article  CAS  Google Scholar 

  9. Bennion LJ, Grundy SM (1978) Risk factors for the development of cholelithiasis in man. N Engl J Med 299: 1161–1167

    Article  PubMed  CAS  Google Scholar 

  10. Bouchier IDA, Cooperband SR, El Kodsi BM (1985) Mucous substances and viscosity of normal and pathological human bile. Gastroenterology 49: 343–353

    Google Scholar 

  11. Broomfield PH, Chopra R, Sheinbaum RC, Bonorris CG, Silverman A, Schoenfield LJ, Marks JW (1988) Effects of ursodeoxycholic acid and aspirin on the formation of lithogenic bile and gallstones during loss of weight. N Engl J Med 319: 1567–1572

    Article  PubMed  CAS  Google Scholar 

  12. Burnstein MJ, Ilson RG, Petrunka CN, Taylor RD, Strasberg SM (1983) Evidence for a potent nucleating factor in the gallbladder bile of patients with cholesterol gallstones. Gastroenterology 85: 801–807

    PubMed  CAS  Google Scholar 

  13. Busch N, Matrinck NY, Cottle A, Mancuso DJ, Tokumo H, Holzbach RT (1988) Inhibiting and promoting effects on cholesterol crystal nucleation are found in protein fractions from normal human gallbladder bile (GBB) Hepatology 8:88 (abstr)

    Article  Google Scholar 

  14. Cabral DJ, Small DM, Lilly HS, Hamilton J A (1987) Transbilayer movement of bile ends in model membranes. Biochemistry 26: 1801–1804

    Article  PubMed  CAS  Google Scholar 

  15. Calbow K, Avramovic-Zikic O, Wessel S (1981) The effect of divalent cations on the interaction of dipalmitoyl phosphatidylcholine vesicles. J Coll Interface Sci 82: 233–239

    Article  Google Scholar 

  16. Carey MC, Small DM (1978) The physical chemistry of cholesterol solubility in bile. J Clin Invest 61: 988–1026

    Google Scholar 

  17. Carey MC, Cahalane MJ (1988) Whither biliary sludge? Gastroenterology 95: 508–523

    PubMed  CAS  Google Scholar 

  18. Collins JJ, Phillips MC (1982) The stability and structure of cholesterol-rich codispersion of cholesterol and phosphatidylcholine. J Lipid Res 23: 291–298

    PubMed  CAS  Google Scholar 

  19. Craven BM (1976) Crystal structure of cholesterol monohydrate. Nature 260: 727–729

    Article  PubMed  CAS  Google Scholar 

  20. Crawford N, Brooke BN (1955) The pH buffering power of human bile. Lancet 1: 1096–1097

    Article  Google Scholar 

  21. Crowe JH, Crowe LM (1988) Factors affecting the stability of dry liposomes. Biochim Biophys Acta 939: 327–334

    Article  PubMed  CAS  Google Scholar 

  22. Cussler EL, Evans DF, De Palma RG (1970) A model for gallbladder function and cholesterol gallstone formation. Proc Natl Acad Sci USA 67: 400–407

    Article  PubMed  CAS  Google Scholar 

  23. Drapers JAG, Groen AK, Stout JPJ, Noordam C, Hoek FJ, Jansen PLM, Tytgat GNJ (1987) Quantification of cholesterol nucleation promoting activity in human gallbladder bile. Clin Chim Acta 165: 295–302

    Article  PubMed  CAS  Google Scholar 

  24. Donovan JM, Benedek GB, Carey MC (1987) Formation of mixed micelles and vesicles of human apolipoproteins A-I and A-II with synthetic and natural lecithins and the bile salts sodium taurocholate: quasi-elastic light scattering studies. Biochemistry 26: 8125–8133

    Article  CAS  Google Scholar 

  25. Feeney RE, Burcham TS (1986) Antifreeze glycoproteins from polar fish blood. Ann Rev Biophys Biophys Chem 15: 59–78

    Article  CAS  Google Scholar 

  26. Fraley R, Wilschut J, Düzgünes N, Smith C, Papahadjopoulos D (1980) Studies on the mechanism of membrane fusion: role of phosphate in promoting calcium ion fusion of phospholipid vesicles. Biochemistry 19: 6021–6029

    Article  PubMed  CAS  Google Scholar 

  27. Gallinger S, Harvey PRC, Petrunka CN, Strasberg SM (1986) Effect of binding of ionised calcium on the in vitro nucleation of cholesterol and calcium bilirubinate in human gallbladder bile. Gut 27: 1382–1386

    Article  PubMed  CAS  Google Scholar 

  28. Garside J (1982) Nucleation. In: Nancollas GH (ed) Biological mineralization and demineralization. Dahlem Konferenzen. Springer, Berlin Heidelberg New York, pp 23–35

    Google Scholar 

  29. Gibbs JW (1961) The scientific papers, Vol 1. Dover, New York

    Google Scholar 

  30. Gollish SH, Burnstein MJ, Ilson RG, Petrunka CN, Strasberg SM (1983) Nucleation of cholesterol monohydrate-crystals from hepatic and gallbladder bile of patients with cholesterol gallstones. Gut 24: 836–844

    Article  PubMed  CAS  Google Scholar 

  31. Groen AK, Stout JPJ, Drapers JAG, Hoek FJ, Grijm R, Tytgat GNJ (1988) Cholesterol nucleation-influencing activity in T-tube bile. Hepatology 8: 347–352

    Article  PubMed  CAS  Google Scholar 

  32. Halpern Z, Dudley MA, Kibe A, Lynn MP, Breuer AC, Holzbach RT (1986) Rapid vesicle formation and aggregation in abnormal human biles. A time-lapse video-enhanced contrast microscopy study. Gastroenterology 90: 875–885

    PubMed  CAS  Google Scholar 

  33. Halpern Z, Dudley MA, Lynn MP, Nader JM, Breuer AC, Holzbach RT (1986) Vesicle aggregation in model systems of supersaturated bile: relation to crystal nucleation and lipid composition of the vesicular phase. J Lipid Res 27: 295–306

    PubMed  CAS  Google Scholar 

  34. Harvey PCR, Rupar CA, Gallinger S, Petrunka CN, Strasberg SN (1986) Quantitative and qualitative comparison of gallbladder mucus glycoprotein from patients with or without gall-stones. Gut 27: 374–381

    Article  PubMed  CAS  Google Scholar 

  35. Hofmann AF, Grundy SM, Lachin JM, Lan SP, Baum RA, Hanson RF, Hersh T, Hightower NC Jr, Marks JW, Mekhijan H, Shaefer RA, Soloway RD, Thistle JL, Thomas FB, Tyor MP, National Cooperative Gallstone Study Group (1982) Pretreatment biliary lipid composition in white patients with radiolucent gallstones in the National Cooperative Gallstone Study. Gastroenterology 83: 738–752

    PubMed  CAS  Google Scholar 

  36. Holan KR, Holzbach RT, Hermann RE, Cooperman AM, Claffey NJ (1979) Nucleation time: key factor in the pathogenesis of cholesterol gallstone disease. Gastroenterology 77: 611–617

    PubMed  CAS  Google Scholar 

  37. Holzbach RT, Marsh M, Olszewski M, Holan K (1973) Cholesterol solubility in bile: evidence that supersaturated bile is frequent in healthy man. J Clin Invest 52: 1457–1479

    Article  Google Scholar 

  38. Holzbach RT, Kibe A, Thiel E, Howell JH, Marsh M, Hermann RE (1984) Biliary proteins. Unique inhibitors of cholesterol crystal nucleation in human gallbladder bile. J Clin Invest 73: 35–45

    Article  PubMed  CAS  Google Scholar 

  39. Holzbach RT (1984) Metastability behaviour of supersaturated bile. Hepatology 4: 1559–1589

    Google Scholar 

  40. Horn RG (1984) Direct measurement of the force between two lipid bilayers and observation of their fusion. Biochim Biophys Acta 778: 224–228

    Article  CAS  Google Scholar 

  41. Hricak H, Filly RA, Margulis AR, Moon KL, Crooks LE, Kaufman L (1983) Work in progress: nuclear magnetic resonance imaging of the gallbladder. Radiology 147: 481–484

    PubMed  CAS  Google Scholar 

  42. Israelachvili JN, McGuiggan PM (1988) Forces between surfaces in liquids. Science 241: 795–800

    Article  PubMed  CAS  Google Scholar 

  43. Kahlweit M (1975) Ostwald ripening of precipitates. Adv Colloid Interf Sci 5: 1–35

    Article  CAS  Google Scholar 

  44. Kibe A, Dudley MA, Halpern Z, Lynn MP, Breuer AC, Holzbach RT (1985) Factors affecting cholesterol monohydrate crystal nucleation time in model systems of supersaturated bile. J Lipid Res 26: 1102–1111

    PubMed  CAS  Google Scholar 

  45. Lai JY, Chow DD, Hwang KJ (1988) Effect of lipid composition on insulin-mediated fusion of small unilamellar liposomes: a kinetic study. J Pharm Sci 77: 432–437

    Article  PubMed  CAS  Google Scholar 

  46. Lairon DH, La Font H, Hauton JC (1972) Lack of mixed micelles bile salt-lecithin-cholesterol in bile and the presence of a lipoproteic complex. Biochimie 54: 529–530

    Article  PubMed  CAS  Google Scholar 

  47. La Russo NF (1984) Proteins in bile: how they get there and what they do. Am J Physiol 247: G199–G205

    Google Scholar 

  48. Lee SP, Nicholls JF (1986) Nature and composition of biliary sludge. Gastroenterology 90: 677–686

    PubMed  CAS  Google Scholar 

  49. Lee TJ, Smith BF (1987) Gallbladder mucin accelerates cholesterol crystal nucleation from cholesterol; enriched vesicles in model bile. Gastroenterology 92:1748 (abstr)

    Google Scholar 

  50. Lee SP, Park HZ, Madani H, Kaler EW (1987) Partial characterization of a non micellar system of cholesterol solubilization in bile. Am J Physiol 252:375–383 G

    Google Scholar 

  51. Levy PF, Smith BF, La Mont JT (1984) Human gallbladder mucin accelerates nucleation of cholesterol in artificial bile. Gastroenterology 87: 270–275

    PubMed  CAS  Google Scholar 

  52. Lis LJ, Lis WT, Parsegian VA, Rand RP (1981) Adsorption of divalent cations to a variety of phosphatidylcholine bilayers. Biochemistry 20: 1771–1777

    Article  PubMed  CAS  Google Scholar 

  53. Magnuson TH, Lillemoe KD, Zarkin BA, Pitt HA (1988) Patients with gallstones acidify bile normally. Hepatology 8:1224 (abstr)

    Google Scholar 

  54. Mazer NA, Carey MC (1983) Quasi elastic light scattering studies of aqueous biliary lipid systems cholesterol solubilization and precipitation in model bile solutions. Biochemistry 22: 426–442

    Article  PubMed  CAS  Google Scholar 

  55. Mc Lean LR, Phillips MC (1982) Cholesterol desorption from cluster of phosphatidylcholine and cholesterol in unilamellar vesicle bilayers during lipid transfer or exchange. Biochemistry 21: 4053–4059

    Article  CAS  Google Scholar 

  56. Mc Lean LR, Phillips MC (1984) Cholesterol transfer from small and large unilamellar vesicles. Biochim Biophys Acta 776: 21–26

    Article  CAS  Google Scholar 

  57. Mok HYI, Druffel ERM, Rampone WM (1986) Chronology of cholelithiasis. Dating gallstones from atmospheric radiocarbon produced by nuclear bomb explosions. N Engl J Med 314: 1075–1077

    Article  PubMed  CAS  Google Scholar 

  58. Nakayama F, van der Linden W (1975) Stratification of bile in the gallbladder and gallstone formation. Surg Gynecol Obstet 141: 587–590

    PubMed  CAS  Google Scholar 

  59. Nichols JW (1988) Phospholipid transfer between phosphatidylcholine-taurocholate mixed micelles. Biochemistry 27: 3925–3931

    Article  PubMed  CAS  Google Scholar 

  60. Olszewski MF, Holzbach RT, Saupe A, Brown GH (1973) Liquid crystals in human bile. Nature 242: 336–337

    Article  PubMed  CAS  Google Scholar 

  61. Ortiz A, Gomez-Fernandez JC (1988) Calcium-induced aggregation of phosphatidylcholine vesicles containing free oleic-acid. Chem Phys Lipids 46: 256–266

    Article  Google Scholar 

  62. Pattinson NR, Chapman BA (1986) Distribution of biliary cholesterol between mixed micelles and nonmicelles in relation to fasting and feeding in humans. Gastroenterology 91: 697–702

    PubMed  CAS  Google Scholar 

  63. Peled Y, Halpern Z, Baruch R, Goldman G, Gilat T (1988) Cholesterol nucleation from its carrier in human bile. Hepatology 8: 914–918

    Article  PubMed  CAS  Google Scholar 

  64. Perdigoto R, Yamazaki K, La Russo NF (1988) Biliary glycoproteins: quantitative differences in subjects with and without gallstones. Hepatology 8:1257 (abstr)

    Google Scholar 

  65. Perl-Treves D, Addadi L (1988) A structural approach to pathological crystallizations. Gout: the possible role of albumin in sodium urate crystallization. Proc R Soc Lond [Biol] p 235: 145–159

    Article  CAS  Google Scholar 

  66. Rand RP (1981) Interacting phospholipid bilayers: measured forces and induced structural changes. Annu Rev Biophys Bioengin 10: 277–314

    Article  CAS  Google Scholar 

  67. Rossi JD, Wallace BA (1983) Binding of fibronectin to phospholipid vesicles. J Biol Chem 258: 3327–3331

    PubMed  CAS  Google Scholar 

  68. Sahlin S, Ahlberg J, Angelin B, Ewerth S, Nilsell K, Reihner E (1988) Occurrence of cholesterol monohydrate crystals in gallbladder and hepatic bile in man: influence of bile acid treatment. Eur J Clin Invest 18: 386–390

    Article  PubMed  CAS  Google Scholar 

  69. Sahlin S, Danielson A, Angelin B, Reihner E, Henriksson R, Einarsson K (1988) Mucin in gall bladder bile of gall stone patients: influence of treatment with chenodeoxycholic and ursodeoxycholic acid. Gut 29: 1506–1510

    Article  PubMed  CAS  Google Scholar 

  70. Salvioli G, Igimi H, Carey MC (1983) Cholesterol gallstone dissolution in bile. Dissimilar kinetics of crystalline cholesterol monohydrate by conjugated chenodeoxycholate-lecithin and conjugated ursodeoxycholate-lecithin mixtures: dissimilar phase equilibria and dissolution mechanisms. J Lipid Res 24: 701–720

    PubMed  CAS  Google Scholar 

  71. Salvioli G, Lugli R, Pradelli JM (1987) Solubilization of cholesterol by high density lipoproteins. Atherosclerosis Rev 16: 87–94

    Google Scholar 

  72. Schubert R, Schmidt KH (1988) Structural changes in vesicle membranes and mixed micelles in various lipid compositions after binding of different bile salts. Biochemistry 27: 8787–8794

    Article  PubMed  CAS  Google Scholar 

  73. Sedaghat A, Grundy SM (1980) Cholesterol crystals and the formation of cholesterol gallstones. N Engl J Med 302: 1274–1277

    Article  PubMed  CAS  Google Scholar 

  74. Shiau YF, Reed M (1986) Phase transition of mucus. Gastroenterology 90:1631 (abstr)

    Google Scholar 

  75. Small DM (1981) The staging of cholesterol gallstones with respect to nucleation and growth. In: Paumgartner G, Stiehl A, Gerok W (eds) Bile acids and lipids. MTP Press, Lancaster, pp 291–300

    Google Scholar 

  76. Smallwood RA, Restall CJ, Chapman D (1981) Bile salts interactions: the effect of sodium taurocholate (NaTC) on the permeability of lipid bilayer to water and urea. In: Paumgartner G, Stiehl A, Gerok W (eds) Bile acids and lipids. MTP Press, Lancaster, pp 171–180

    Google Scholar 

  77. Somjen GJ, Gilat T (1983) A non-micellar mode of cholesterol transport in human bile. FEBS Lett 156: 265–268

    Article  PubMed  CAS  Google Scholar 

  78. Somjen GJ, Gilat T (1985) Contribution of vesicular and micellar carriers to cholesterol transport in human bile. J Lipid Res 26: 699–704

    PubMed  CAS  Google Scholar 

  79. Somjen GJ, Harvey PRC, Rosenberg R, Werbin N, Strasberg SM, Gilat T (1988) Quantitation of phospholipid vesicles and their cholesterol content in human bile by quasi-elastic light scattering. Biochim Biophys Acta 963: 265–270

    PubMed  CAS  Google Scholar 

  80. Strasberg SM, Harvey PCR, Gallinger S (1984) Cholesterol nucleation in gallstone patients. In: Paumgartner G, Stiehl A, Gerok W (eds) Enterohepatic circulation of bile acids and sterol metabolism. MTP Press, Lancaster, pp 299–304

    Google Scholar 

  81. Sutor DJ, Wilkie LI (1976) Diurnal variations of the pH of pathological gallbladder bile. Gut 17: 971–974

    Article  PubMed  CAS  Google Scholar 

  82. Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann Rev Biophys Bioengin 9: 467–508

    Article  CAS  Google Scholar 

  83. Tera H (1960) Stratification of human gallbladder in vivo. Acta Chir Scand [Suppl] 256: 1–85

    Google Scholar 

  84. Thureborn E (1966) On the stratification of human bile and its importance for the solubility of cholesterol. Gastroenterology 50: 775–780

    PubMed  CAS  Google Scholar 

  85. Toor EN, Evans DF, Cussler EL (1978) Cholesterol monohydrate growth in model bile solutions. Proc Natl Acad Sci USA 75: 6230–6234

    Article  PubMed  CAS  Google Scholar 

  86. Trotman BW, Petrella EJ, Soloway RD, Sanchez HM, Morris TA III, Miller WT (1975) Evaluation of radiographic lucency or opaqueness of gallstones as a means of identifying cholesterol or pigment stones. Correlation of lucency or opaqueness with calcium and mineral. Gastroenterology 68: 1563–1566

    PubMed  CAS  Google Scholar 

  87. van der Linden W, Nakayama F (1982) Hepatic versus duodenal bile. Scand J Gastroenterol 11: 487–502

    Google Scholar 

  88. Whiting MJ, Watts JM (1983) Cholesterol crystal formation and growth in model solutions. J Lipid Res 24: 861–868

    PubMed  CAS  Google Scholar 

  89. Whiting MJ, Watts JM (1984) Supersaturated bile from obese patients without gallstones supports cholesterol crystal growth but not nucleation. Gastroenterology 86: 243–248

    PubMed  CAS  Google Scholar 

  90. Whiting MJ, Watts JM (1985) Cholesterol gallstone pathogenesis: a study of potential nucleating agents for cholesterol crystal formation in bile. Clin Sci 68: 589–596

    PubMed  CAS  Google Scholar 

  91. Williamson BWA, Trainer M (1986) Gallstone pathogenesis: physicochemical factors which control the nucleation of cholesterol by compounds in gallstones. Gut 27: A 1005 (abstr)

    Google Scholar 

  92. Wilschut J, Hoekstra D (1984) Membrane fusion from liposomes to biological membranes. TIBS 9: 479–485

    CAS  Google Scholar 

  93. Witten TA, Cates ME (1986) Tenuous structures from disorderly growth processes. Science 232: 1607–1612

    Article  PubMed  CAS  Google Scholar 

  94. Wrigglesworth M (1988) Incorporation of membrane proteins into liposomal bilayers. Mol Aspects Med 10: 223–232

    Article  PubMed  CAS  Google Scholar 

  95. Yamazaki K, Powers SP, La Russo NF (1988) Biliary proteins: assessment of quantitative techniques and comparison in gallstone and nongallstone subjects. J Lipid Res 29: 1055–1063

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Salvioli, G., Lugli, R., Pellati, M. (1990). Nucleation and Aggregation of Cholesterol Crystals in the Early Phase of Gallstone Genesis. In: Swobodnik, W., Soloway, R.D., Ditschuneit, H. (eds) Gallstone Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74619-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74619-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50965-3

  • Online ISBN: 978-3-642-74619-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics