Species Differences in Pharmacokinetics, Metabolism, and DNA Binding of Inhaled 1,3-Butadiene

  • R. J. Laib
  • S. Deutschmann
  • B. Jelitto
  • R. R. Vangala
  • R. Kreiling
Part of the ILSI Monographs book series (ILSI MONOGRAPHS)

Abstract

1,3-Butadiene, a major component in synthetic rubber and adiponitrile manufacture, has been found to produce cancer at multiple anatomic sites in two species of experimental animals. In an inhalation bioassay with Sprague-Dawley rats (exposure to 1000 and 8000 ppm for 110 weeks), butadiene affected exclusively organs with endocrine functions and was considered a weak oncogen (Hazleton Laboratories Europe 1981). A recent long-term study with B6C3F1 mice (exposure to 625 and 1200 ppm for 60 weeks) revealed a considerably higher carcinogenic activity (Huff et al. 1985). Target organs were lymphatic tissue, heart, lung mammary gland, and possibly liver.

Keywords

Epoxy Adduct Oncol Epoxide Diene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolt HM, Schmiedel G, Filser JG, Rolzhäuser HP, Lieser K, Wistuba D, Schilling V (1983) Biological activation of 1,3-butadiene to vinyl oxirane by rat liver microsomes and expiration of the reactive metabolite by exposed rats. J Cancer Res Clin Oncol 106:112–116.PubMedCrossRefGoogle Scholar
  2. Bolt HM, Filser JG, Störnier F (1984) Inhalation pharmacokinetics based on gas uptake studies. V. Comparative pharmacokinetics of ethylene and 1,3-butadiene in rats. Arch Toxicol 55:213–218.PubMedCrossRefGoogle Scholar
  3. Citti L, Gervasi PG, Turchi G, Beilud G, Bianchini R (1984) The reaction of 3,4-epoxy-1-butene with deoxyguanosine and DNA in vitro: synthesis and characterization of the main adducts. Carcinogenesis 5:47–52.PubMedCrossRefGoogle Scholar
  4. Deutschmann S, Laib RJ (1989) Concentration-dependent depletion of non-protein sulfhydryl (NPSH) content in lung, heart and liver tissue of rats and mice after acute inhalation exposure to butadiene. Toxicol Lett 45:145–183.CrossRefGoogle Scholar
  5. Filser JG, Bolt HM (1981) Inhalation pharmacokinetics based on gas uptake studies I. Improvement of kinetic models. Arch Toxicol 47:279–292.Google Scholar
  6. Filser JG, Bolt HM (1984) Inhalation pharmacokinetics based on gas uptake studies VI. Comparative evaluation of ethylene oxide and butadiene monoxide as exhaled reactive metabolites of ethylene and 1,3-butadiene in rats. Arch Toxicol 55:219–223.PubMedCrossRefGoogle Scholar
  7. Hazleton Laboratories Europe (1981) 1,3-butadiene. Inhalation teratogenicity study in the rat. Final report and addendum no 27800-522/3. Hazleton Labs, Harrowgate, England.Google Scholar
  8. Huff JE, Melnick RL, Solleveld HA, Hasemann JK, Power M, Miller RA (1985) Multiple organ carcinogenicity of 1,3-butadiene in B6C3F1 mice after 60 weeks of inhalation exposure. Science 277:548–549.CrossRefGoogle Scholar
  9. Jelitto B, Vangala RR, Laib RJ (1989) Species-differences in DNA damage by butadiene: role of diepoxybutane. Arch Toxicol (Suppl) 13:246–279.Google Scholar
  10. Kreiling R, Laib RJ, Bolt HM (1986a) Alkylation of nuclear proteins and DNA after exposure of rats and mice to (1,4-14C) 1,3-butadiene. Toxicol Lett 30:131–136.PubMedCrossRefGoogle Scholar
  11. Kreiling R, Laib RJ, Filser JG, Bolt HM (1986b) Species differences in butadiene metabolism between mice and rats evaluated by inhalation pharmacokinetics. Arch Toxicol 58:35–238.CrossRefGoogle Scholar
  12. Kreiling R, Laib RJ, Filser JG, Bolt HM (1987) Inhalation pharmacokinetics of l,2-epoxybutene-3 reveal species differences between rats and mice sensitive to butadiene induced carcinogenesis. Arch Toxicol 61:7–11.PubMedCrossRefGoogle Scholar
  13. Kreiling R, Laib RJ, Bolt HM (1988) Depletion of hepatic non-protein sulfhydryl content during exposure of rats and mice to butadiene. Toxicol Lett 41:209–214.PubMedCrossRefGoogle Scholar
  14. Lorenz J, Glatt JR, Fleischmann R, Ferlintz R, Oesch F (1984) Drug metabolism and its relationship to that in three rodent species; monooxygenase, epoxide hydrolase and glutathione-S-transferase activities in subcellular fractions of lung and liver. Biochem Med 32:43–56.PubMedCrossRefGoogle Scholar
  15. Malvoisin E, Roberfroid M (1982) Hepatic microsomal metabolism of 1,3-butadiene. Xenobiotica 12:137–144.PubMedCrossRefGoogle Scholar
  16. Malvoisin E, Lhoest G, Poncelet F, Roberfroid M, Mercier M (1979) Identification and quantitation of 1,2-epoxybutene-3 as the primary metabolite of 1,3-butadiene. J Chromatogr 178:419–425.CrossRefGoogle Scholar
  17. Malvoisin E, Mercier M, Roberfroid M (1982) Enzymic hydration of butadiene monoxide and its importance in the metabolism of butadiene. Adv Exp Med Biol 38A:437–444.Google Scholar
  18. Sterzel W, Bedford P, Eisenbrand G (1984) Automated determination of DNA using the fluorochrome Hoechst 33258. Anal Biochem 147:462–467.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • R. J. Laib
    • 1
  • S. Deutschmann
    • 1
  • B. Jelitto
    • 1
  • R. R. Vangala
    • 1
  • R. Kreiling
    • 1
  1. 1.Institut für ArbeitsphysiologieAbteilung für Toxikologie und ArbeitsmedizinDortmund 1Germany

Personalised recommendations