The replacement of the true hamiltonian of a system with an effective one which operates only on the spin variables is commonplace in all areas of magnetic resonance spectroscopy. This is a parametric approach, which is helpful for the interpretation of sets of experimental data. The parameters which are obtained have no particular meaning per se, but they must be compared with more fundamental theory. When one finds, for example, that the EPR spectra of a copper (II) complex can be interpreted within the spin hamiltonian formalism to yield g‖=2.20, g⊥=2.06, it is only recurring to ligand field theory that the conclusion can be made that the unpaired electron is located in either a x 2y 2 or a xy orbital.


Unpaired Electron Slater Determinant Spin Hamiltonian Parameter Angular Momentum Operator Orbital Degeneracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    Martin R L (1968) In: Ebsworth EAV, Maddock AG, Sharpe AG (eds) New pathways in inorganic chemistry., Cambridge University Press, London, p 175Google Scholar
  2. 2.2
    Silver BL (1976) Irreducible tensor methods Academic, New YorkGoogle Scholar
  3. 2.3
    Moriya (1963) In: Rado GT, Suhl H (eds) Magnetism, Academic New York, Vol 1 p 85Google Scholar
  4. 2.4
    Anderson OP, Kuechler T S (1980) Inorg. Chem. 19:1417CrossRefGoogle Scholar
  5. 2.5
    Bencini A, Benelli C, Gatteschi D, Zanchini C (1984) J. Am. Chem. Soc. 106:5813CrossRefGoogle Scholar
  6. 2.6
    Geller M (1963) J. Chem. Phys. 39:84CrossRefGoogle Scholar
  7. 2.7
    Matcha RL, Kern CW, Schrader DM (1969) J. Chem. Phys. 51:2152CrossRefGoogle Scholar
  8. 2.8
    Matcha RL, Kern CW (1970) Phys. Rev. Lett. 25:981CrossRefGoogle Scholar
  9. 2.9
    Van der Waals JH, ter Maten G (1964) Mol. Phys 8:301CrossRefGoogle Scholar
  10. 2.10
    Boorstein SA, Goutermann M (1965) J. Chem. Phys. 42:3070CrossRefGoogle Scholar
  11. 2.11
    McWeeny R (1961) J. Chem. Phys. 34:399CrossRefGoogle Scholar
  12. 2.12
    de Jager G, de Jong J, Mac Lean C, Ros P (1977) Theoret. Chim. Acta 20:57CrossRefGoogle Scholar
  13. 2.13
    Brustolon M, Pasimeni L, Corvaja C (1973) Chem. Phys. Letters 21:194CrossRefGoogle Scholar
  14. 2.14
    Belford RL, Chasteen ND, So H, Tapscott RE (1969) J. Am. Chem. Soc. 91:4675CrossRefGoogle Scholar
  15. 2.15
    Bertini I, Luchinat C (1986) NMR of paramagnetic molecules in biological systems Benjamin/Cummings:Menlo Park, CAGoogle Scholar
  16. 2.16
    Gribnau M (1988) Ph.D. Thesis, NijmegenGoogle Scholar
  17. 2.17
    Kanamori J (1963) In Rado TG, Suhl H (eds) Magnetism. Academic, New York, vol 1 p 161Google Scholar
  18. 2.18
    Bencini A, Gatteschi D, Zanchini C, Haase W (1985) Inorg. Chem. 24:3485CrossRefGoogle Scholar
  19. 2.19
    Chariot MF, Journaux Y, Kahn O, Bencini A, Gatteschi D, Zanchini C (1985) Inorg. Chem. 25:1060CrossRefGoogle Scholar
  20. 2.20
    Bencini A, Gatteschi D, Zanchini C (1985) Inorg. Chem. 24:700CrossRefGoogle Scholar
  21. 2.21
    Smith TD, Pilbrow JR (1974) Coord. Chem. Rev. 13:173CrossRefGoogle Scholar
  22. 2.22
    Keijzers CP (1986) In: Electron spin resonance The Royal Society of Chemistry, London, vol 10B p 1Google Scholar
  23. 2.23
    Bencini A, Gatteschi D (1982) Mol. Phys. 47:161CrossRefGoogle Scholar
  24. 2.24
    Owen J, Harris EA (1972) In: Geschwind S (ed.) Electron paramagnetic resonance. Plenum, New York, p 427Google Scholar
  25. 2.25
    Anderson PW (1963) In: Seitz F, Turnbull (eds) Solid state physics. New York, vol 14 p 99Google Scholar
  26. 2.26
    Huang NL, Orbach R (1964) Phys. Rev. Letters 12:275CrossRefGoogle Scholar
  27. 2.27
    Kanamori J (1957) Progr. Theor. Phys. (Japan) 17:197CrossRefGoogle Scholar
  28. 2.28
    Stevens KWH (1976) Phys. Rep. 24c, 1Google Scholar
  29. 2.29
    Stevens KWH (1985) In: Willett RD, Gatteschi D, Kahn O (eds.), Magneto-structural correlations in exchange coupled systems. Reidel, Dordrecht p 105Google Scholar
  30. 2.30
    Griffith JS (1961) The theory of transition metal ions Cambridge University PressGoogle Scholar
  31. 2.31
    Bencini A, Gatteschi D, Zanchini C (1985) Mol. Phys. 56:97CrossRefGoogle Scholar
  32. 2.32
    Malmstrom BG (1980) In: (1980) In: Spiro TG (ed) Metal ion activation of dioxygen., Ed; Wiley, New York p 181Google Scholar
  33. 2.33
    Palmer G (1979) In: Dolphin D (ed) The Porphyrins; Academic press, New York, p 313Google Scholar
  34. 2.34
    Kahn O, Toller P, Coudanne H. (1979) Chem. Phys. 42:355CrossRefGoogle Scholar
  35. 2.35
    Leuenberger B, Güdel HU (1984) Mol. Phys. 51:1CrossRefGoogle Scholar
  36. 2.36
    Robin MB, Day P (1967) Adv. Inorg. Chem. Radiochem. 10:248Google Scholar
  37. 2.37
    Sacconi L, Mealli C, Gatteschi D. (1974) Inorg. Chem. 13:185CrossRefGoogle Scholar
  38. 2.38
    Campbell RJ, Clark R J M (1978) Mol. Phys. 36:1133CrossRefGoogle Scholar
  39. 2.39
    Cooper SR, Calvin M (1977) J. Am. Chem. Soc. 99:6623CrossRefGoogle Scholar
  40. 2.40
    Mascharak PK, Papaefthymiou GC, Frankel RB, Holm RH (1981) J. Am. Chem. Soc. 103:6110CrossRefGoogle Scholar
  41. 2.41
    Wong KY, Schatz PN (1981) Progr. Inorg. Chem. 28:369CrossRefGoogle Scholar
  42. 2.42
    Girerd J-J (1983) J. Chem. Phys. 79:1766CrossRefGoogle Scholar
  43. 2.43
    Hubbard J (1963) Proc. R. Soc. London Ser. A 276:238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Alessandro Bencini
    • 1
  • Dante Gatteschi
    • 1
  1. 1.Department of ChemistryUniversity of FlorenceFlorenceItaly

Personalised recommendations