Skip to main content

Celiac Disease: Adenovirus and Alpha Gliadin

  • Conference paper
Molecular Mimicry

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 145))

Abstract

Celiac disease (gluten-sensitive enteropathy, celiac sprue, nontropical sprue) is characterized by damage to the small intestinal mucosa and malabsorption of most nutrients (reviewed in Cole and Kagnoff 1985; Kagnoff 1989). The disease is activated by dietary exposure to wheat gluten and similar proteins in several other grains. Wheat gluten is a mixture of gliadin and glutenin (Kasarda 1981). It is the gliadin fraction that is responsible for activating this disease (Kasarda 1981). The symptoms commonly appear during the first 3 years of life after the introduction of cereals into the diet, with a second peak incidence occurring during the 3rd and 4th decades. Clinical manifestations predominantly reflect the consequences of malabsorption. Treatment consists of a gluten-free diet (i.e., a diet free of gluten and related, disease-associated grains) (Cole and Kagnoff 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alper CA, Fleischnick E, Awdeh Z, Katz AJ, Yunis EJ (1987) Extended major histocompatibility complex haplotypes in patients with gluten-sensitive enteropathy. U Clin Invest 79: 251–256

    Article  CAS  Google Scholar 

  • Bartels D, Thompson RD (1983) The characterization of cDNA clones coding for wheat storage proteins. Nucleic Acids Res 11: 2961–2977

    Article  PubMed  CAS  Google Scholar 

  • Bernardin JE, Aunders RM, Kasarda DD (1976) Absence of carbohydrate in celaic-toxic A-gliadin. Cereal Chem 53:612–614

    CAS  Google Scholar 

  • Bietz J A (1982) Cereal prolamin evolution and homology revealed by sequence analysis. Biochem Genet 20: 1039–1053

    Article  PubMed  CAS  Google Scholar 

  • Bjarnason I, Peters TJ (1984) In vitro determination of small intestinal permetability: demonstration of a persistent defect in patients with celiac disease. Gut 25: 145–150

    Article  PubMed  CAS  Google Scholar 

  • Bos JL, Polder LJ, Bernards R, Schrier PI, van den Elsen PJ, van der Eb AJ, van Ormondt H (1981) The 2.2 kb Elb mRNA of human Ad 12 and Ad5 codes for two tumor antigens starting at different AUG triplets. Cell 27: 121–131

    Article  PubMed  CAS  Google Scholar 

  • Ciclitira PJ, Hunter JO, Lennox ES (1980) Clinical testing of bread made from nullisomac 6A wheats in celiac patients. Lancet ii: 234–236

    Article  Google Scholar 

  • Ciclitira PJ, Evans DJ, Fagg NLK, Lennox ES, Dowling RH (1984) Clinical testing of gliadin fractions in celiac patients. Clin Sci 66: 357–364

    PubMed  CAS  Google Scholar 

  • Ciclitira PJ, Ellis HJ, Wood GM, Howdle PD, Losowski MS (1986) Secretion of gliadin antibody by coeliac jejunal mucosal biopsies cultured in vitro. Clin Exp Immunol 64: 119–124

    PubMed  CAS  Google Scholar 

  • Cole SG, Kagnoff MF (1985) Celiac disease. In: Olson RE (ed) Annual Review of Nutrition. Annual Reviews Inc., Palo Alto, CA, pp 241–266

    Google Scholar 

  • D’Ambrosio E, Del Grosso N, Chicca A, Midulla M (1982) Neutralizing antibodies against 33 human adenoviruses in normal children in Rome. J Hyg Camb 89: 155–166

    Article  PubMed  Google Scholar 

  • Falchuk ZM, Gebhard RL, Sessoms C, Strober W (1974) An in vitro model of gluten sensitive enteropathy. Effect of gliadin on intestinal epithelial cells of patients with gluten-sensitive enteropathy in organ culture. J Clin Invest 53: 487–500

    Article  PubMed  CAS  Google Scholar 

  • Flint SJ (1980) Structure and genomic organization of adenoviruses. In: Tooze J (ed) Molecular biology of tumor viruses II. DNA tumor viruses. Cold Spring Harbor Laboratory, New York, pp 383–441, 547–576

    Google Scholar 

  • Hamilton I, Cobden I, Rothwell J, Axon ATR (1982) Intestinal permeability in celiac disease: the response to gluten withdrawal and single-dose gluten challenge. Gut 23: 202–210

    Article  PubMed  CAS  Google Scholar 

  • Hekkens WTJM, Haex AJC, Willighagen RGJ (1970) Some aspects of gliadin fractionation and testing by a histochemical method. In: Booth CC, Dowling RH (eds) Coeliac disease. Churchill Livingstone, Edinburgh, pp 11–19

    Google Scholar 

  • Howdle PD, Ciclitira PJ, Simpson FG, Losowsky MS (1984) Are all gliadins toxic in celiac disease? An in vitro study of alpha, beta, gamma, and omega gliadins. Scand J Gastro 19: 41–47

    CAS  Google Scholar 

  • Howell MD, Austin RK, Kelleher D, Nepom GT, Kagnoff F (1986) An HLA-D region restriction fragment length polymorphism associated with celiac disease. J Exp Med 164: 333–338

    Article  PubMed  CAS  Google Scholar 

  • Howell MD, Smith JR, Austin RK, Kelleher D, Nepom GT, Volk B, Kagnoff MF (1988) An extended HLA-D region haplotype associated with celiac disease. Proc Natl Acad Sci USA 85: 222–226

    Article  PubMed  CAS  Google Scholar 

  • Jos J, Charbonnier L, Mosse J, Olives JP, de Tand M, Rey J (1982) The toxic fraction of gliadin digests in celiac disease. Isolation of chromatography on Biogel P-10. Clinica Chimica Acta 119:263–274

    Article  CAS  Google Scholar 

  • Jos J, Charbonnier L, Mougenot JF, Mosse J, Rey J (1978) Isolation and characterization of the toxic fraction of wheat gliadin in celiac disease. In: McNicholl B, McCarthy CF, Fottrell PF (eds) Perspective in celiac disease. University Park Press, Baltimore, pp 75–90

    Google Scholar 

  • Kagnoff MF (1984) Possible role for a human adenovirus in the pathogenesis of celiac disease. J Exp Med 160: 1544–1557

    Article  PubMed  CAS  Google Scholar 

  • Kagnoff MF (1987) Evidence for the role of a human intestinal adenovirus in the pathogenesis of celiac disease. Gut 28: 995–1001

    Article  PubMed  CAS  Google Scholar 

  • Kagnoff MF (1989) Celiac disease: pathogenesis and clinical features. In: Thomson ABR, Shaffer EA (ed) Modern concepts in gastroenterology. Plenum, New York (in press)

    Google Scholar 

  • Kagnoff MF (1988) Celiac disease: a model of an immunologically-mediated disease. In: Kagnoff MF (ed) Immunology and allergy clinics of North America. WB Saunders, Philadelphia, 8: pp 505–520

    Google Scholar 

  • Karagiannis JA, Priddle JD, Jewell DP (1987) Cell-mediated immunity to a synthetic gliadin peptide resembling a sequence from adenovirus 12. Lancet ii: 884–886

    Article  Google Scholar 

  • Kasarda DD (1981) Toxic proteins and peptides in celiac disease: relations to cereal genetics. In: Walcher D, Kretchmer M (eds) Food nutrition and evolution. Masson, New York, pp 201–216

    Google Scholar 

  • Kasarda DD, Bernardin JE, Nimmo CC (1976a) Wheat proteins. In: Advances in cereal science and technology. American Association of Cereal Chemists, St Paul, MN, pp 158–236

    Google Scholar 

  • Kasarda DD, Bernardin JE, Qualset CO (1976 b) Relationship of gliadin protein components to chromosomes in hexploid wheats. Proc Natl Acad Sci USA 73: 3646–3650

    Article  PubMed  CAS  Google Scholar 

  • Kasarda DD, Okita TW, Bernardin JE, Baecker PA, Nimmo CC, Lew EJ, Dietler MD, Greene FC (1984) Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum L.). Proc Natl Acad Sci USA 81: 4112–4116

    Article  Google Scholar 

  • Katz SI, Hall RP, Lawley TJ, Strober W (1980) Dermatitis herpetiformis: the skin and the gut. Ann Int Med 93: 857–874

    PubMed  CAS  Google Scholar 

  • Kendall MJ, Cox PS, Schneider R, Hawkins CF (1972) Gluten subfractions in coeliac disease. Lancet 2: 1065–1067

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Sawada Y, Shinawawa M, Shimizu Y, Shiroki K, Sugisaki H, Takanami M, Uemizu Y, Fujinaga K (1981) Nucleotide sequence of the transforming early region Elb of adenovirus type 12 DNA: structure and gene organization, and comparison with those of adenovirus type 5 DNA. Nucleic Acids Res 9: 6571–6589

    Article  PubMed  CAS  Google Scholar 

  • Kolberg J, Sollid L (1985) Lectin activity of gluten identified as wheat germ agglutinin. Biochem Biophys Res Commun 130: 867–872

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. JMol Biol 157: 105–132

    Article  CAS  Google Scholar 

  • Lawley TJ, Strober W, Yaoita H, Katz, SI (1980) Small intestinal biopsies and HLA types in dermatitis herpetiformis patients with granular and linear IgA skin deposits. J Invest Dermatol 74: 9–12

    Article  PubMed  CAS  Google Scholar 

  • Levenson SD, Austin RK, Dietler MD, Kasarda DD, Kagnoff MF (1985) Specificity of anti-gliadin antibody in celiac disease. Gastroenterology 89: 1–5

    PubMed  CAS  Google Scholar 

  • Lewis AM, Cook JL (1984) The interface between adenovirus-transformed cells and cellular immune response in the challenged host. Curr Topics Microbiol Immunol, 110: pp 1–22

    Google Scholar 

  • Lydford-Davis H, Karagiannis JA, Priddle JD, Jewell DP (1987) Preliminary characterization of leukocyte migration inhibition factor (LIF) produced by lymphocytes from celiac patients when stimulated with gluten peptides. Clin Sci 72: 89P

    Google Scholar 

  • Mak S, Mak I, Smiley JR, Graham FL (1979) Tumorigenicity and viral gene expression in rat cells transformed by Ad 12 virions or by the EcoRI C fragment of Ad 12 DNA. Virology 98: 456–460

    Article  PubMed  CAS  Google Scholar 

  • Middleton PJ (1982) Role of viruses in pediatric gastrointestinal disease and epidemiologic factors. In: Tyrell DAJ, Kapikian AZ (eds) Virus infections of the gastrointestinal tract. Dekker, New York, pp 211–225

    Google Scholar 

  • Norrby E, Ankerst J (1969) Biological characterization of structural components of adenovirus type 12. J Gen Virol 5: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Perricaudet M, le Moullec J-M, Tiollais P (1980) Structure of two adenovirus type 12 transforming polypeptides and their evolutionary implications. Nature 288: 174–176

    Article  PubMed  CAS  Google Scholar 

  • Phelan JJ, Stevens FM, McNicholl B, Fottrell PF, McCarthy CF (1977) Celiac disease: the abolition of gliadin toxicity by enzymes from Aspergillus niger. Clin Sci Molec Med 53: 35–43

    CAS  Google Scholar 

  • Polanco I, Biemond I, van Leeuwen A, Schreuder I, Meera, Kahn P (1981) Gluten-sensitive enteropathy in Spain: Genetic and environmental factors. In: McConnell RB (ed) The genetics of celiac disease. MTP Press, Lancaster, pp 211–231

    Google Scholar 

  • Rafalski JA, Scheets K, Metzler M, Peterson DM, Hedgcoth C (1984) Developmentally regulated plant genes: the nucleotide sequence of a wheat gliadin genomic clone. EMBO J 3:1409–1415

    PubMed  CAS  Google Scholar 

  • Schwartz RH (1985) T-lymphocyte recognition of antigen in association with gene products of the major histocompatibility complex. Annu Rev Immunol 3: 237–262

    Article  PubMed  CAS  Google Scholar 

  • Scott BB, Goodall A, Stephenson P, Jenkins D (1984) Small intestinal plasma cells in celiac disease. Gut 25: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Sterchi EE, Woodley JF (1978) Peptidases of the human intestinal brush border membrane. In: McNicholl B, McCarthy CF, Fottrell PF (eds) Perspectivesin celiac disease. University Park Press, Baltimore, pp 437–449

    Google Scholar 

  • Tosi R, Vismara D, Tanigaki N, Ferrara GB, Cicimarra F, Buffolano W, Folio D, Auricchio S (1983) Evidence that celiac disease is primarily associated with a DC locus allelic specificity. Clin Immunol Immunopathol 28: 395–404

    Article  PubMed  CAS  Google Scholar 

  • Wilson MC, Fraser NW, Darnell JE (1979) Initiation sites by high doses of UV irradiation: evidence for three independent promoters within the left 11% of the Ad-2 gene. Virology 94: 175–184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kagnoff, M.F. (1989). Celiac Disease: Adenovirus and Alpha Gliadin. In: Oldstone, M.B.A. (eds) Molecular Mimicry. Current Topics in Microbiology and Immunology, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74594-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74594-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74596-6

  • Online ISBN: 978-3-642-74594-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics