Skip to main content

Compressional and Shear-Wave Velocity Models of the Schwarzwald Derived from Seismic Refraction Data

  • Conference paper
The German Continental Deep Drilling Program (KTB)

Part of the book series: Exploration of the Deep Continental Crust ((EXPLORATION))

Abstract

To investigate the structure, physical properties and the composition of the crust beneath the Black Forest, southwest Germany, deep seismic sounding experiments were carried out in 1984. They comprised seismic refraction as well as seismic reflection measurements. This paper presents a summary of investigations concerning the Black Forest seismic refraction P- and S-wave three-component data, which were recoreded along a 240-km-long line, following the morphological axis of the Black Forest in a N-S direction. The data underscore the importance of joint P- and S-wave interpretations. Contrary to the common assumption, the reflectivity of the crust for P- and S-waves may differ significantly. The most surprising observations in the Black Forest data come from the middle and lower crust. Whereas the P-velocity model shows a distinct decrease in the middle crust (velocities of about 5.4 km/s are observed), the corresponding S-velocities show no decrease. The result is a low Poisson’s ratio of 0.15 for the middle crust. It is interpreted as an area of fractured rocks with either dry cracks or fluid filled cracks at low pore pressure or both together. The reflected P-wavefield from the lower crust is characterized by long reverberating wavetrains followed by the reflection from the crust-mantle boundary (Moho). The Moho-reflection is also clearly visible in the S-wave seismograms; however, there does not exist a shear-wave response from the lower crust, which is comparable to that for the P-waves. The reflectivity of the lower crust is different for seismic P- and S-waves: the S-wave velocity distribution varies smoothly with depth, whereas the P-wave velocity distribution is laminated (as is, therefore, Poisson’s ratio). The high P-wave velocity layers are of mafic composition, while the low P-wave velocity layers may have a higher quartz content. This supports the interpretation of the lower-crustal reflections as intrusions (underplating) in a previously more homogeneous, less mafic crust. A clear converted wave from the crust-mantle boundary is observed, indicating that the Moho along the eastern shoulder of the Rhinegraben rift is, at least locally, a first order discontinuity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki K, Richards PG (1980) Quantitative seismology, theory and methods, Freeman, San Francisco

    Google Scholar 

  • Allmendinger RW, Farmer H, Hauser E, Sharp J, Von Tisch D, Oliver J, Kaufman S (1986) Phanerozoic tectonics of the Basin and Range-Colorado Plateau transition from COCORP data and geological data. In: Barazangi M, Brown L (eds) Reflection seismology: A global perspective. Geodynamics Ser. Vol. 13, AGU, Washington, D.C., p 257

    Chapter  Google Scholar 

  • Assumpcao M, Bamford D (1978) LISPB - V. Studies of crustal shear waves. Geophys. J. R. Astron. Soc. 54: 61–73

    Google Scholar 

  • Banda E, Surinach E, Aparicio A, Sierra J, Ruiz de la Parte E (1981) Crust and upper mantle structure of the central Iberian Meseta (Spain). Geophys. J. R. Astron. Soc. 67: 779–789

    Google Scholar 

  • Bartelsen H, Luschen E, Krey Th, Meissner R, Schmoll H, Walter Ch (1982) The combined reflection-refraction investigation of the Urach geothermal anomaly. In: Haenel R (ed) The Urach geothermal project. Schweizerbart, Stuttgart, p 247

    Google Scholar 

  • Berktold A, Musmann G, Tezkan B, Wohlenberg J (1985) Electrical conductivity studies, Schwarzwald Working Group (abs). Second International Symposium on Observation of the Continental Crust through Drilling, Alfred-Wegener-Stiftung, Bonn, 70 p

    Google Scholar 

  • Bois C, Cazes M, Damotte B, Galdeano A, Hirn A, Mascle A, Matte P, Raoult JF, Torreilles G (1986) Deep seismic profiling in the crust of northern France: the ECORS project. In: Barazangi M, Brown L (eds) Reflection seismology: A global perspective. Geodynamics Ser. Vol. 13, AGU, Washington, D.C., p 21

    Chapter  Google Scholar 

  • Bortfeld RK, Gowin J, Stiller M, Baier B, Behr HJ, Heinrichs T, Dürbaum HJ, Hahn A, Reichert Ch, Schmoll J, Dohr G, Meissner R, Bittner R, Milkereit B, Gebrande H (1985) First results and preliminary interpretation of deep reflection seismic recordings along profile DEKORP 2-South. J. Geophys. 57: 137–163

    Google Scholar 

  • Braile LW, Smith RB, Keller GR, Welch RM, Meyer RP (1974) Crustal structure across the Wasatch Front from detailed seismic refraction studies. J. Geophys. Res. 79: 2669–2677

    Google Scholar 

  • Brooks SG (1985) Seismic velocities from crustal sections in northern Scandinavia, Ph.D. thesis, University of East Anglia.

    Google Scholar 

  • Cerveny V, Molotkov IA, Psencik I (1977) Ray method in seismology, Univ. of Karlova, Prague

    Google Scholar 

  • Cerveny V, Psencik I (1984) SEIS83- Numerical modelling of seismic wave fields in 2-D laterally varying layered structures by the ray method. In: Engdahl ER (ed) Documentation of earthquake algorithms, Rep. SE-35, World Data Center (A) for Solid Earth Geophysics, Boulder, Colorado, p 36

    Google Scholar 

  • Crampin S (1981) A review of wave motion in anisotropic cracked elastic media. Wave Motion 3: 343–391

    Article  Google Scholar 

  • Damotte B, Fuchs K, Lüschen E, Wenzel F, Schlich R, Torreilles G (1987) Wide angle Vibroseis test across the Rhinegraben. Geophys. J. R. Astron. Soc. 89: 313–318

    Google Scholar 

  • Deichmann N (1984) Combined travel-time and amplitude interpretation of two seismic refraction studies in Europe, Ph.D. thesis, Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  • Deichmann N, Ansorge J (1983) Evidence for lamination in the lower continental crust beneath the Black Forest (Southwestern Germany). J. Geophys. 52: 109–118

    Google Scholar 

  • Dohr G (1970) Seismic reflection measurments in the Upper Rhinegraben with digital recording technique and processing (in German). In: lilies JH and Mueller St (eds) Graben problems. Schweizerbart, Stuttgart, p 207

    Google Scholar 

  • Dohr G, Fuchs K (1967) Statistical evaluation of deep crustal reflections in Germany. Geophysics 32: 951–967

    Article  Google Scholar 

  • Edel JB, Fuchs K, Gelbke C, Prodehl C (1975) Deep structure of the Southern Rhinegraben area from seismic refraction investigations. J. Geophys. 41: 333–356

    Google Scholar 

  • Egloff R (1979) Explosion seismic investigations of the earth’s crust in Switzerland, Ph.D. thesis, Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  • El-Isa Z, Mechie J, Prodehl C (1987) Shear velocity structure of Jordan from explosion seismic data. Geophys. J. R. Astron. Soc. 90: 265–281

    Google Scholar 

  • Emter D (1971) Results of seismic investigations of the earth’s crust and upper mantle in Southwest Germany (in German), Ph.D. thesis, University of Stuttgart, Stuttgart

    Google Scholar 

  • Fertig J (1984) Shear waves by an explosive point-source: the earth surface as a generator of converted P-S waves. Geophysical Prospecting 32: 1–17

    Article  Google Scholar 

  • Finckh P, Ansorge J, Mueller St, Sprecher Ch (1984) Deep crustal reflections from a Vibroseis survey in northern Switzerland. Tectonophysics 109: 1–14

    Article  Google Scholar 

  • Finckh P, Frei W, Fuller B, Johnson R, Mueller St, Smithson S, Sprecher Ch (1986) Detailed crustal structure from a seismic reflection survey in northern Switzerland. In: Barazangi M, Brown L (eds) Reflection seismology: A global perspective. Geodynamics Ser. Vol. 13, AGU, Washington, D.C., p 43

    Google Scholar 

  • Fuchs K (1970) On the determination of velocity-depth distributions of elastic waves from the dynamic characteristics of the reflected wave field. Z. Geophys. 36: 531–548

    Google Scholar 

  • Fuchs K (1975) Synthetic seismograms of PS-reflections from transition zones computed with the reflectivity method. J. Geophys. 41: 445–462

    Google Scholar 

  • Fuchs K, Müller G (1971) Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys. J. R. Astron. Soc. 23: 417–423

    Google Scholar 

  • Fuchs K, Bonjer K-P, Gajewski D, Liischen E, Prodehl C, Sandmeier K-J, Wenzel F, Wilhelm H (1987) Crustal evolution of the Rhinegraben area: I. Exploring the lower crust in the Rhinegraben rift by unified geophysical experiments. Tectonophysics 141: 261–275

    Google Scholar 

  • Furlong KP, Fountain DM (1986) Continental crustal underplating: thermal considerations and seismic-petrologic consequences. J. Geophys. Res. 91: 8285–8294

    Google Scholar 

  • Gajewski D (1981) Shear and converted waves in the interpretation of deep seismic measurements in the Kalahari craton, Namibia (in German), Diploma thesis, University of Clausthal, Clausthal-Zellerfeld

    Google Scholar 

  • Gajewski D (1984) Interpretation of synthetic record sections for a 2-D laterally inhomogeneous structure. In: Ansorge J and Finlayson DM (eds) Workshop proceedings: Interpretation of synthetic record sections for a 2-D laterally inhomogeneous structure. Rep. 258, Bur. Mineral. Resour. Aust., Canberra, p 139

    Google Scholar 

  • Gajewski D (1987) Ray-theoretical seismograms for arbitrarily heterogeneous, anisotropic media, with applications to the South German lithosphere (in German), Ph.D. thesis, Univ. of Karlsruhe, Karlsruhe

    Google Scholar 

  • Gajewski D, Prodehl C (1985) Crustal structure beneath the Swabian Jura, SW Germany, from seismic refraction investigations. J.Geophys. 56: 69–80

    Google Scholar 

  • Gajewski D, Prodehl C (1987) Seismic refraction investigation of the Black Forest. Tectonophysics 142: 27–48

    Article  Google Scholar 

  • Gajewski D, Holbrook WS, Prodehl C (1987a) A three-dimensional crustal model of Southwest Germany derived from seismic refraction data. Tectonophysics 142: 49–70

    Article  Google Scholar 

  • Gajewski D, Holbrook WS, Prodehl C (1987b) Combined seismic reflection and refraction profiling in southwest Germany - detailed velocity mapping by the refraction survey, Geophys. J. R. Astron. Soc. 89: 333–338

    Google Scholar 

  • Gajewski D, Prodehl C, Ritter J, Feddersen J (1988a) A compilation of data from the 1984 seismic- refraction experiment in SW-Germany, Open File Report 88–1, Geophysical Institute, University of Karlsruhe, Karlsruhe

    Google Scholar 

  • Gajewski D, Fuchs K, Sandmeier K-J, Stangl R (1988b) Constraints on composition of the topmost continental mantle from widespread observations of weak Sn amplitudes, submitted to Geophys. J. R. Astron. Soc.

    Google Scholar 

  • Hall J, Ali M (1985) Shear waves in a seismic survey of Lewisian basement: an extra control on lithological variation and porosity. J. Geol. Soc. London 142: 677–688

    Google Scholar 

  • Heelan PA (1953) Radiation from a cylindrical source of finite length. Geophysics 18: 685–696

    Article  Google Scholar 

  • Hirn A, Damotte B, Torreilles G, ECORS scientific party (1987) Crustal reflection seismics: the contribution of oblique, low frequency and shear-wave illuminations. Geophys. J. R. Astron. Soc. 89: 287–296

    Google Scholar 

  • Holbrook WS, Gajewski D, Prodehl C (1987) Shear-wave velocity and Poisson’s ratio structure of the upper lithosphere in Southwest Germany. Geophys. Res. Lett. 14: 231–234

    Google Scholar 

  • Holbrook WS, Gajewski D, Krammer A, Prodehl C (in press, 1988) An interpretation of wide-angle compressional and shear wave data in Southwest Germany: Poisson’s ratio and petrological implications. J. Geophys. Res.

    Google Scholar 

  • Holbrook WS (in press 1988) A petrological model of the laminated lower crust in southwest Germany based on wide-angle P- and S-wave seismic data. AGU Geophysical Monograph of the IUGG 1987, Volume on the lower crust

    Google Scholar 

  • Jacob AWB, Booth DC (1977) Observation of PS reflections from the Moho. J. Geophys. 43: 687–692

    Google Scholar 

  • Jentsch M, Bamford D, Emter D, Prodehl C (1982) A seismic refraction investigation of the basement structure in the Urach geothermal anomaly, southern Germany. In: Haenel R (ed) The Urach geothermal project. Schweizerbart, Stuttgart, p 247

    Google Scholar 

  • Keller GR, Smith RB, Braile LW (1975) Crustal structure along the Great Basin - Colorado Plateau transition from seismic refraction studies. J. Geophys. Res. 80: 1093–1098

    Google Scholar 

  • Krammer A (1988) Evaluation and interpretation of seismic shear- and converted-waves for a refraction profile in the Black Forest (in German), Diploma thesis, University of Karlsruhe, Karlsruhe

    Google Scholar 

  • Kullinger B, Lund C-E (1986) A preliminary interpretation of S-wave traveltimes from Fennolora data. Tectonophysics 126: 375–388

    Article  Google Scholar 

  • Lash CC (1980) Shear waves, multiple reflections, and converted waves found by a deep vertical wave test (vertical seismic profiling). Geophysics 45: 1373–1411

    Article  Google Scholar 

  • Lüschen E., Wenzel F, Sandmeier K-J, Menges D, Rühl Th, Stiller M, Janoth W, Keller F, Söllner W, Thomas R, Krohe A, Stenger R, Fuchs K, Wilhelm H, Eisbacher G (1987) Near-vertical and wide-angle seismic surveys in the Black Forest. J. Geophys. 62: 1–30

    Google Scholar 

  • Luetgert JH, Mann CE, Klemperer SL (1987) Wide-angle deep crustal reflections in the northern Appalachians, Geophys. J. R. Astron. Soc. 89: 183–188

    Google Scholar 

  • Luosto O, Korhonen H (1986) Crustal structure of the Baltic Shield based on off-Fennolora refraction data. Tectonophysics 128: 183–208

    Article  Google Scholar 

  • Matthews DH, Cheadle MJ (1986) Deep reflections from the Caledonides and Variscides west of Britain and comparison with the Himalayas. In: Barazangi M, Brown L (eds) Reflection seismology: A global perspective. Geodynamics Ser. Vol. 13, AGU, Washington, D.C., p 5

    Google Scholar 

  • McGeary S, Warner MR (1985) Seismic profiling of the continental lithosphere. Nature 317: 795–797

    Article  Google Scholar 

  • Meissner R (1967) On the structure of the earth’s crust (in German). Gerlands Beitr. Geophys. 76: 211–254

    Google Scholar 

  • Meissner R (1973) The ‘Moho’ as a transition zone. Geophys. Surveys 1: 195–216

    Article  Google Scholar 

  • Meissner R, Bartelsen H, Krey Th, Schmoll J (1982) Detecting velocity anomalies in the region of the Urach geothermal anomaly by means of new seismic field arrangements. In: Cermalc V, Haenel R (eds) Geothermics and geothermal energy. Schweizerbart, Stuttgart, p 285

    Google Scholar 

  • Meissner R, Wever T (1986) Nature and development of the crust according to deep reflection data from the German Variscides. In: Barazangi M, Brown L (eds) Reflection seismology: The continental crust. Geodynamics Ser. Vol. 13, AGU, Washington, D.C., p 31

    Google Scholar 

  • Min Z, Wu FT (1987) Nature of the upper crust beneath Central Tibet. Earth Planet. Sci. Lett. 84: 204–210

    Google Scholar 

  • Mooney WD, Brocher TM (1987) Coincident seismic reflection/refraction studies of the continental lithosphere: a global review. Rev. of Geoph. 25: 723–742

    Article  Google Scholar 

  • Mueller St, Peterschmitt E, Fuchs K, Ansorge J (1969) Crustal structure beneath the Rhinegraben from seismic refraction and reflection measurements. Tectonophysics 8: 529–542

    Article  Google Scholar 

  • Mueller St, Peterschmitt E, Fuchs K, Emter D, Ansorge J (1973) Crustal structure of the Rhinegraben area. Tectonophysics 20: 381–391

    Article  Google Scholar 

  • O’Connel RJ, Budiansky B (1977) Viscoelastic properties of fluid-saturated cracked solids. J. Geophys. Res. 82: 5719–5735

    Google Scholar 

  • Prodehl C, Ansorge J, Edel JB, Emter D, Fuchs K, Mueller St, Peterschmitt E (1976) Explosion seismology research of the central and southern Rhinegraben - a case history. In: Giese P, Prodehl C, Stein A (eds) Explosion seismology in central Europe - data and results. Springer, Berlin, Heidelberg, New York, p 313

    Chapter  Google Scholar 

  • Prodehl C, Emter D, Jentsch M (1982) Seismic infraction studies of the geothermal area of Urach, southwest Germany. In: Haenel R (ed) The Urach geothermal project. Schweizerbart, Stuttgart, p 277

    Google Scholar 

  • Ruthardt A (1986) Interpretation of deep seismic measurements in the Kalahari craton, Namibia, with special consideration of shear and converted waves (in German), Diploma thesis, University of Karlsruhe, Karlsruhe

    Google Scholar 

  • Sandmeier K-J, Wenzel F (1986) Synthetic seismograms for a complex crustal model. Geophys. Res. Lett. 13: 22–25

    Google Scholar 

  • Sierro N, Bindschaedler A, Ansorge J, Mueller St (1983) A geophysical investigation of northern Switzerland: Regional seismic-refraction measurments (in German). Tech. Rep. 21–83, NAGRA (National association for the deposit of nuclear waste), Baden

    Google Scholar 

  • Spencer JW, Nur A (1976) The effect of pressure, temperature and pore water on velocities in Westerly granite. J. Geophys. Res. 81: 899–904

    Google Scholar 

  • Stiefel A, Wilhelm H (1986) Geothermal investigations in the Black Forest (in German). Berichtsband 1984–1986 des Sonderforschungsbereichs 108 der Uni. Karlsruhe: Spannung und Spannungs¬umwandlung in der Lithosphäre, p 213

    Google Scholar 

  • Tarkov AP, Basula IP, Generalov VP, Dubyansky AI, Chernykh W (1981) Composite travel times of seismic waves and general velocity models of the Voronezh Shield crust and upper mantle. Geophys. J. R. Astron. Soc. 67: 137–143

    Google Scholar 

  • Tezkan B (1988) Electromagnetic sounding experiments in the Schwarzwald central gneiss massif. J.Geophys 62: 109–118

    Google Scholar 

  • Trappe H (1983) An interpretation of wide-angle reflections along the Urach profile and a correlation to the results of the steep-angle seismic reflection experiment (in German), Diploma thesis, University of Kiel, Kiel

    Google Scholar 

  • Walther Ch, Trappe H, Meissner R (1986) The detailed velocity structure of the Urach geothermal anomaly. J. Geophys. 59: 1–10

    Google Scholar 

  • Wenzel F, Sandmeier K-J, Wälde W (1987) Properties of the lower crust from modeling refraction and reflection data. J. Geophys. Res. 92: 11575–11583

    Google Scholar 

  • White JE, Sengbush RL (1963) Shear waves from explosive sources. Geophysics 28: 1001–1019

    Article  Google Scholar 

  • Zschau J, Koschyk K (1976) Results of a combined evaluation of longitudinal and transverse waves on a seismic profile along the northern margin of the Alps. In: Giese P, Prodehl C, Stein A (eds) Explosion seismology in central Europe. Springer, Berlin, Heidelberg, New York, p 332

    Google Scholar 

  • Zucca JJ (1984) The crustal structure of the southern Rhinegraben from re-interpretation of seismic refraction data. J. Geophys. 55: 13–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gajewski, D. (1989). Compressional and Shear-Wave Velocity Models of the Schwarzwald Derived from Seismic Refraction Data. In: Emmermann, R., Wohlenberg, J. (eds) The German Continental Deep Drilling Program (KTB). Exploration of the Deep Continental Crust. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74588-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74588-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74590-4

  • Online ISBN: 978-3-642-74588-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics