Advertisement

Realtime Surveying in Close Range Area with Inertial Navigation Systems and Optical Target Tracking Techniques

  • Wolfgang Möhlenbrink
Conference paper

Summary

Realtime dynamic surveying methods on construction sites are treated in this paper. With the development of an optoelectronic measurement system the positioning of construction machines becomes possible. The measurement system is realized by the combination of realtime cameras which are equipped with position sensitive devices and classical photogrammetric approaches. A target tracking theodolite with automatic angle measurement capability is used for dynamic positioning of slowly moving objects. For tunneling and pipe jacking techniques a measurement methodology is proposed to determine position and orientation with an inertial measurement system using a special step technique. This technique provides a refractionless measurement tool for bad visible conditions.

Keywords

Construction Site Inertial Measurement Unit Inertial Navigation System High Pressure Equipment Azimuth Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann, H.: Fehleranalyse und Simulation eines Trägheitsnavigationssystem mit fahrzeugfesten Sensoren. Dissertation, Technische Universität Braunschweig, 1976.Google Scholar
  2. Bayer, G.: Motorized Electronic Theodolite — High Precision Measurement Robots for Surveying. Proc. of the International Workshop “High Precision Navigation”, Stuttgart, May 17th–20th, 1988.Google Scholar
  3. Britting, K.: Inertial Navigation Systems Analysis, New York, John Wiley & Sons, 1971.Google Scholar
  4. Czommer, R.: Arbeits- und Ergebnisbericht 1984–1986 des Sonderforschungs-bereichs 228 “Hochgenaue Navigation”, Teilprojekt E3 “Inertialtechnik im Nahbereich”.Google Scholar
  5. Hiller, M.: Mechanische Systeme, Springer Verlag, Berlin 1983Google Scholar
  6. Joos, D. K.: Comparison of Typical Gyro Errors for Strapdown Applications, Symposium über Kreiseltechnik, Stuttgart, 1977.Google Scholar
  7. Krzystek, P.: High Precision Surveying of Moving Objects by Electronic Cameras. Proc. of the International Workshop “High Precision Navigation”, Stuttgart, May 17th–20th, 1988.Google Scholar
  8. Magnus, K.: Grundlagen der technischen Mechanik, Stuttgart, 1974Google Scholar
  9. Magnus, K.: Kreisel: Theorie und Anwendungen, Berlin, Springer, 1971.Google Scholar
  10. Möhlenbrink, W.: Abschlußbericht zum Einsatz von Positionssensoren zur Ver-messung von Rohrvorpressungen, Forschungsgesellschaft für geodätische Meß- und Rechentechnik, GmbH, Stuttgart 1984 (unveröffentlicht).Google Scholar
  11. Möhlenbrink, W.: Nonlinearities in the Dynamic Model of Inertial Sensors, Third International Symposium on Inertial Technology for Surveying and Geodesy, Banff, Canada, September 16–20, 1985.Google Scholar
  12. Möhlenbrink, W.: Drift Efects in Inertial Measurement Systems (Resulting from Nonlinear Terms in the Equations of Motions), Proceedings: Inertial, Doppler and GPS Measurements for National and Engineering Surveys, München, 1985.Google Scholar
  13. Oppelt, W.: Kleines Handbuch technischer Regel Vorgänge, Weinheim Verlag Chemie GmbH, 1972.Google Scholar
  14. Sauer, R., Szabo, I.: Mathematische Hilfsmittel des Ingenieurs, Teil I, Berlin, Springer, 1967.Google Scholar
  15. Savage, P. G.: Strapdown Sensors, AGARD Lecture Series No. 95, “Strapdown Inertial Systems”, 1978.Google Scholar
  16. Savage, P. G.: Strapdown System Algorithmus, AGARD Lecture Series No. 133, “Advances in Strapdown Inertial Systems, 1984.Google Scholar
  17. Schöne, A.: Simulation technischer Systeme, Band I, Carl Hanser Verlag, München, 1974.Google Scholar
  18. Stieler, B., Winter, H.: Gyroscopic Instruments and their Application to Flight Testing, Agardograph, No. 160, Vol. 15, 1983.Google Scholar
  19. Welsch, D.: Aktions-Reaktions-Analyse zur objektorientierten Verarbeitung von Meßdaten statischer und dynamischer Vorgänge an Bauwerken. Dissertation Universität Stuttgart, eingereicht 1988.Google Scholar
  20. Wetzig, V.: Ermittlung der Richtungsreferenz im Strapdown-System, Vortrag CCG, Braunschweig, 1985.Google Scholar
  21. Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, Stuttgart, 1987.Google Scholar
  22. Wiegner, S.: Fehleranalyse und Simulation eines Proportional-Wendekreisels für die Strapdown-Anwendung in einem Inertialnavigationssystem. Selbständige Geodät. Arbeit am IAGB, Stuttgart, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Wolfgang Möhlenbrink
    • 1
  1. 1.Inst, für Anwendungen der Geodäsie im BauwesenUniversität StuttgartGermany

Personalised recommendations