Geodetic Positioning by Inertial and Satellite Systems: An Overview

  • Erik W. Grafarend
Conference paper


Once satellite and inertial systems are used for geodetic positioning they offer mainly the advantage of online coordination in geometry and gravity space as well as the unnecessary direct line-of-sight. Here their system analysis is based on the threedimensional network point of view for satellite systems, e.g. GPS or GLONASS, and the traverse network philosophy for inertial systems.


Torque Refraction Triad Geophysics Dinates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Budde, K. (1988): Adjusting large threedimensional networks: strategies and computations. Submitted Paper, Third SIAM Conference on Applied Linear Algebra, Madison, May 23–26.Google Scholar
  2. Delikaraoglou, D. (1985): Estimability analysis of free networks of differential range observations to GPS satellites, in: Optimization and Design of Geodetic Networks, ed. E.W. Grafarend and F. Sanso, Springer-Verlag, p. 196–220, Berlin — Heidelberg — New York — Tokyo 1985.Google Scholar
  3. Eren, K. (1987): Geodetic network adjustment using GPS triple difference observations and a priori stochastic information. Technical Report No. 1, Institute of Geodesy, University of StuttgartGoogle Scholar
  4. Grafarend, E. (1981): From kinematical geodesy to inertial positioning. Bulletin géodésique 55 (1981) 286–299.CrossRefGoogle Scholar
  5. Grafarend, E. and W. Lindlohr (1988): World: A multipurpose GPS-network computer package. Proceedings, GPS-Workshop, ed. E. Groten, Darmstadt 1988.Google Scholar
  6. Grafarend, E. and V. Müller (1985): The critical configuration of satellite networks, especially of Laser and Doppler type, for planar configurations of terrestrial points, manuscripta geodaetica 10 (1985) 131–152.Google Scholar
  7. Grafarend, E.W., W. Lindlohr and D.E. Wells (1985): GPS redundancy design using the undifferenced phase observation approach. Proceedings, Second Meeting of the European Working Group on Satellite Radio Positioning, Saint-Mandé, pp. 100–107.Google Scholar
  8. Grafarend, E.W. and B. Schaffrin (1988): Von der statischen zur dynamischen Auffassung geodätischer Netze. Zeitschrift für Vermessungswesen, Vol. 112, No. 2, pp. 79–103.Google Scholar
  9. Heitz, S. (1984): Mechanik fester Körper, Bd. 2: Dynamik elastischer Körper, mechanische Grundlagen der Geodäsie, Dümmler-Verlag, Bonn 1984.Google Scholar
  10. Lindlohr, W. (1988a): Alternative modeling of GPS carrier phases for geodetic network analysis. Submitted Paper, International Workshop High Precision Navigation, Stuttgart-Altenstein/Wart, May 17 - 20.Google Scholar
  11. Lindlohr, W. (1988b): PUMA: processing of undifferenced GPS carrier beat phase measurements and adjustment computations. Technical Report No. 5, Institute of Geodesy, University of Stuttgart, in preparation.Google Scholar
  12. Lindlohr, W. (1988c): Dynamische Analyse geodätischer Netze auf der Basis von GPS-Phasenbeobachtungen, Dissertation, Universität Stuttgart 1988.Google Scholar
  13. Lindlohr, W. and D. Wells (1985): GPS design using undifferenced carrier beat phase observations, manuscripta geodaetica H) (1985) 255–295.Google Scholar
  14. Magnus, K. (1986): Die Beschleunigungsabhängigkeit der Vertikalen-Anzeige von Schwerependel und Lotkreisel. Ingenieur-Archiv, 35. Band, Heft 3, 143–149, 1986.Google Scholar
  15. Pachelski, W., D. Lapucha and K. Budde (1988): GPS network analysis: the influence of stochastic prior information of orbital elements on ground station position measures. Technical Report No. 4, Institute of Geodesy, University of Stuttgart, Stuttgart 1988.Google Scholar
  16. Remondi, B.W. (1984): Using the Global Positioning System (GPS) phase observable for relative geodesy: modeling, processing, and results. CSR-84-2, Center for Space Research, The University of Texas at Austin.Google Scholar
  17. Schaffrin, B. (1985): Das geodätische Datum mit stochastischer Vorinformation. Deutsche Geodätische Kommission, C-13, München.Google Scholar
  18. Schaffrin, B. (1987): Statistical tests for an improved deformation analysis based on GPS and due to stochastic prior information, EOS 68 (1987), No. 44, p. 1237 (Abstract).Google Scholar
  19. Schaffrin, B. and Y. Bock (1988): A unified scheme for processing GPS dual- band phase observations, Bull. Geod. 62 (1988), to appear.Google Scholar
  20. Schaffrin, B. and E.W. Grafarend (1986): Generating classes of equivalent linear models by nuisance parameter elimination: applications to GPS observations. Manuscripta Geodaetica, Vol. 11, No. 4, pp. 262–271.Google Scholar
  21. Schröder, D., S. Wiegner, E. Grafarend and B. Schaffrin (1986): Simulation eines Geodätischen Inertialsystems. Schriftenreihe Studiengang Vermessungswesen, Universität der Bundeswehr München, Heft 22, 197–235, 1986.Google Scholar
  22. Schröder, D., N. Chi Thong, S. Wiegner, E.W. Grafarend and B. Schaffrin (1988) A comparative study of local level and strapdown inertial systems. Manuscripta Geodaetica, Vol. 13, No. 4, in print.Google Scholar
  23. Schuler, M. (1923): Die Störung von Pendel- und Kreiselapparaten durch die Beschleunigung des Fahrzeugs. Physikalische Zeitschrift, Band 24, 344–350, 1923.Google Scholar
  24. Schwarz, K.P. (1983): Inertial surveying and geodesy. Reviews of Geophysics and Space Physics, Vol. 21, No. 4, 878–890, 1983.Google Scholar
  25. Schwarz, K.P. (1986): Inertial technology for surveying and geodesy. Proceedings Third International Symposium, Banff/Canada, Sept. 16–20, 1985, ed. K.P. Schwarz, 850 pages, 2 volumes, Calgary 1986.Google Scholar
  26. Tsimis, E. (1973): Critical configurations (determinantal loci) for range and range-difference satellite networks. Department of Geodetic Science, Ohio State University, Report 191, Columbus 1973.Google Scholar
  27. Vassiliou, A. and K.P. Schwarz (1985): Eigenvalues of the dynamics matrix used in inertial geodesy, manuscripta geodaetica 10 (1985) 213–221.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Erik W. Grafarend
    • 1
  1. 1.Geodätisches InstitutUniversität StuttgartGermany

Personalised recommendations