Skip to main content

Introduction

  • Conference paper
  • 47 Accesses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 144))

Abstract

The herpesviruses all contain large, linear, double-stranded DNA genomes that vary between 150–230 kilobase pairs in length. In the virus particle, this DNA is contained within a toroidal core, made of proteins about 75 nm in diameter. The DNA-protein core is packaged in an icosahedral capsid composed of 162 capsomers, which in turn surrounds a protein tegument that appears as a granular zone of globular protein in electron micrographs. The icosahedron is wrapped in a lipid envelope containing several virus encoded glycoproteins that appear as short projections from the envelope in photomicrographs (Roizman and Lopez 1985). The neurotropic herpesviruses, herpes simplex types 1 and 2 and varicella zoster virus (sometimes called the alpha group of herpesviruses), and the lympho-tropic cytomegalovirus (a beta-group herpesvirus) have not convincingly been shown by epidemiological studies to be involved in oncogenic processes. Nor has it been possible to demonstrate convincingly that any of these viruses encodes a gene or induces an activity which results in the transformation of cells in culture. On the other hand, the gamma-group herpesviruses, including Epstein-Barr virus (EBV), herpesvirus saimiri, herpesvirus ateles, and Marek’s disease virus, have all been shown to be causally associated with B- and T-cell lymphomas and, in the case of EBV, nasopharyngeal carcinoma (Roizman and Lopez 1985). Part V contains a set of articles reviewing the gamma herpesviruses genes and gene products involved in viral episome replication and transformation of cells in culture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baer R, Bankier AT, Biggen MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Sequin C, Tuffneil PS, Barrell BG (1984) DNA sequence and expression of the B95–8 Epstein-Barr virus genome. Nature 310: 207–211

    Article  PubMed  CAS  Google Scholar 

  • Baichwal VR, Sugden B (1988) Transformation of BALB-3T3 cells by the BNLF-1 gene of Epstein-Barr virus. Oncogene 2: 461–467

    PubMed  CAS  Google Scholar 

  • Dambaugh T, Wang F, Hennessy K, Woodlan E, Rickinson A, Kieff E (1986) Expression of the EBNA-2 protein in rodent cells J Virol 59: 453–462

    PubMed  CAS  Google Scholar 

  • Dillner J, Kadlin B, Alexander H, Ernberg I, Uno M, Ono Y, Klein G, Lerner RA (1986) An Epstein-Barr virus determined nuclear antigen partly encoded by the transformation associated Bam WYH region of EBV DNA. Proc Natl Acad Sci USA 83: 6641–6645

    Article  PubMed  CAS  Google Scholar 

  • Gerber P (1972) Activation of Epstein-Barr virus by 5-BUDR in virus free human cells. Proc Natl Acad Sci USA 69: 83–85

    Article  PubMed  CAS  Google Scholar 

  • Hearing JC, Nicolas JC, Levine AJ (1984) Identification of Epstein-Barr virus sequences that encode a nuclear antigen expressed in latently infected lymphocytes. Proc Natl Acad Sci USA 81:4373–4377

    Article  PubMed  CAS  Google Scholar 

  • Hennessy K, Kieff E (1985) A second nuclear protein is encoded by Epstein-Barr virus in latent infection. Science 227: 1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T, Adams A, Bjursell G, Bornkamm GW, Kaschka-Dierich C, Jehn U (1976) Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J Mol. Biol 102:511–530

    Article  PubMed  CAS  Google Scholar 

  • Lupton S, Levine AJ (1984) Mapping genetic elements of Epstein-Barr virus that facilitate extrachomosomal persistance of EBV derived plasmids in human cells. Mol Cell Biol 5: 2533–2542

    Google Scholar 

  • Nonoyama M, Pagano J (1971) Complementary RNA specific to DNA of Epstein-Barr virus: detection of EB viral genomes in non-productive cells. Nature [New Biol] 233: 103–106

    CAS  Google Scholar 

  • Pattengale PK, Smith RW, Perlin E (1974) Atypical lymphocytes in acute infectious mononucleosis. Identification by multiple T and B lymphocyte markers. N Engl J Med 291: 1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Petti L, Kieff E (1988) A sixth Epstein-Barr virus nuclear protein (EBNA-3B) is expressed in latently infected growth transformed lymphocytes. J Virol 62: 2173–2178

    PubMed  CAS  Google Scholar 

  • Pope JH, Home MK, Scott W (1968) Transformation of foetal human leukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like viruses. Int J Cancer 3: 857–866

    Article  PubMed  CAS  Google Scholar 

  • Reisman D, Yates J, Sugden B (1985) A putative origin of replication of plasmids derived from EBV is composed of two cis-acting components. Mol Cell Biol 5: 1822–1832

    PubMed  CAS  Google Scholar 

  • Roizman B, Lopez C (eds) (1985) The herpesviruses, vol 4. Plenum, New York

    Google Scholar 

  • Rowlins DR, Milman G, Hayward SD, Hayward GS (1985) Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen to clustered sites in the plasmid maintenance region. Cell 42: 859–868

    Article  Google Scholar 

  • Sample J, Hummel M, Braun D, Birkenbach M, Kieff E (1986) Nucleotide sequences of mRNAs encoding EBV nuclear proteins: a probable transcriptional initiation site. Proc Natl Acad Sci USA 83: 5096–5100

    Article  PubMed  CAS  Google Scholar 

  • Thorley-Lawson DA, Israelsohn E (1987) Generation of specific cytotoxic T cells with a fragment of the Epstein-Barr virus encoded p63-latent membrane protein. Proc Natl Acad Sci USA 84: 5384–5388

    Article  PubMed  CAS  Google Scholar 

  • Van Santen V, Cheung A, Kieff E (1981) Epstein-Barr Virus RNA VII, size and direction of transcription of virus specific cytoplasmic RNA species in a transformed cell line. Proc Natl Acad Sci USA 78: 1930–1934

    Article  PubMed  Google Scholar 

  • Wang D, Liebowitz D, Kieff E (1985) An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43: 831–840

    Article  PubMed  CAS  Google Scholar 

  • Yates J, Warren N, Reisman D, Sugden B (1984) A cis-acting element from Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA 81: 3606–3610

    Article  Google Scholar 

  • zur Hausen H, Schulte-Holthausen H, Klein G, Henle W, Henle G, Clifford P, Sanesson L (1970) EBV DNA in biopsies of Burkitt tumors and aplastic carcinomas of the nasopharynx. Nature 228: 1056–1058

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Levine, A.J. (1989). Introduction. In: Knippers, R., Levine, A.J. (eds) Transforming Proteins of DNA Tumor Viruses. Current Topics in Microbiology and Immunology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74578-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74578-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74580-5

  • Online ISBN: 978-3-642-74578-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics