Skip to main content

Analysis of Strange Attractors in EEGs with Kinesthetic Experience and 4-D Computer Graphics

  • Conference paper
Brain Dynamics

Part of the book series: Springer Series in Brain Dynamics ((SSBD,volume 2))

Abstract

Newly developed techniques for numerical analysis of the time series derived from physical and chemical systems displaying turbulence and other seemingly random behavior have recently been applied to electroencephalographic potentials (EEGs). Estimates for the lower bounds of measures of the fractal dimension, Hausdorff dimension, Lyapunov exponents, Kolmogorov entropy, and other related coefficients have indicated that by suitable means of observation the background “noise” generated by brains may be nonrandom, and may be constrained by as yet undefined aspects of neural mechanisms generating it. In a word, brain activity, at least in some states and in some brain parts, appears to be chaotic and not stochastic (Rapp et al. 1985; Freeman and Viana Di Prisco 1986; Babloyantz and Destexhe 1986; Havstadt and Ehlers 1987; Meyer-Kress 1987; Freeman 1987 a, b, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott EA (1952) Flatland, 6th edn. Dover, New York

    Google Scholar 

  • Albano AM, Mees AI, deGuzman GC, Rapp PE (1986) Data requirements for reliable estimation of correlation dimensions. In: Holden AV (ed) Chaotic biological systems. Pergamon, New York

    Google Scholar 

  • Babloyantz A, Destexhe A (1986) An instance of low-dimensional chaos in epilepsy. Proc Natl Acad Sci USA 83: 3513–3521

    Article  PubMed  CAS  Google Scholar 

  • Baird B (1986) Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb. Physica 22D: 150–175

    Google Scholar 

  • Banschoff TF (1984) The hypercube (16 mm color film) International Film Bureau, Chicago

    Google Scholar 

  • Banschoff TF (1986) Visualizing two-dimensional phenomena in four-dimensional space: a computer graphics approach. In: Wegman EJ, DePriest DJ (eds) Statistical image processing and graphics. Dekker, New York, pp 187–202, 18 plates

    Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic, New York

    Google Scholar 

  • Freeman WJ (1986) Petit mal seizure spikes in olfactory bulb and cortex caused by runaway inhibition after exhaustion of excitation. Brain Res Rev 11: 259–284

    Article  Google Scholar 

  • Freeman WJ ( 1987 a) Techniques used in the search for the physiological basis of the EEG. In: Gevins A, Remond A (eds) Handbook of EEG and clinical neurophysiology, vol 3 part 2. Elsevier, Amsterdam, chap 18

    Google Scholar 

  • Freeman WJ (1987 b) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56:139–150

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (1988) Strange attractors that govern mammalian brain dynamics shown by trajectories of electroencephalographie (EEG) potential. IEEE Trans Circuits and Systems 35: 781–784

    Article  Google Scholar 

  • Freeman WJ, Skarda CA (1985) Spatial EEG patterns, nonlinear dynamics and perception: the neo-Sherringtonian view. Brain Res Rev 10: 147–175

    Article  Google Scholar 

  • Freeman WJ, Viana Di Prisco G (1986) EEG spatial pattern differences with discriminated odors manifest chaotic and limit cycle attractors in olfactory bulb of rabbits. In: Palm G, Aertsen A (eds) Brain theory. Springer, Berlin Heidelberg New York, pp 97–119

    Chapter  Google Scholar 

  • Gleick J (1987) Chaos. Making a new science. Viking, New York

    Google Scholar 

  • Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica 9D: 189–208

    Google Scholar 

  • Guckenheimer J (1984) Dimension estimates for attractors. Contemp Math 28: 357–367

    Google Scholar 

  • Havstadt JW, Ehlers CL (1987) Attractor dimension for small data sets. Preprint, La Jolla CA

    Google Scholar 

  • Kaneko K (1986) Collapse of tori and genesis of chaos in dissipative systems. World Scientific, Singapore

    Google Scholar 

  • Mees AI, Rapp PE, Jennings LS (1987) Singular value decomposition and embedding dimension. Physical Rev A36: 340–346

    Article  Google Scholar 

  • Meyer-Kress G (1987) Application of dimension algorithms to experimental chaos. In: Hao Bai-Lin (ed) Directions in chaos, World Scientific, Singapore, pp 122–147

    Google Scholar 

  • Peitgen H-O (1985) Fly Lorenz (16 mm color film). International Film Bureau, Chicago

    Google Scholar 

  • Peitgen H-O, Richter P (1986) The beauty of fractals. Images of complex dynamical systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Poincare H (1958) The value of science. Dover, New York, pp 37–74

    Google Scholar 

  • Poincare H (1963) Last essays. Dover, New York, pp 25–44

    Google Scholar 

  • Rapp PE, Zimmerman ID, Albano AM, deGuzman GC, Greenbaum NN, Bashore TR (1985) Experimental studies of chaotic neural behavior: cellular activity and electroencephalographic signals. In: Othmer HG (ed) Nonlinear oscillations in biology and chemistry. Springer, Berlin Heidelberg New York, pp 175–205

    Google Scholar 

  • Rössler OE (1978) Deductive biology — some cautious steps. Bull Math Biol 40: 45–58

    PubMed  Google Scholar 

  • Rössler OE (1979) Chaos. In: Guttinger W, Eikemeier H (eds) Structural stability in physics. Springer, Berlin Heidelberg New York, pp 290–309

    Chapter  Google Scholar 

  • Rössler OE (1981) An artificial cognitive-plus-motivational system. Prog Theor Biol 6: 147–160

    Google Scholar 

  • Rössler OE (1983) The chaotic hierarchy. Z Naturforsch 38a: 788–801

    Google Scholar 

  • Rucker R (1984) The fourth dimension. Houghton-Mifflin, Boston

    Google Scholar 

  • Schwenk T (1976) Sensitive chaos. Schocken Books, New York; Steiner, Dornach

    Google Scholar 

  • Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Brain Behav Sci 10: 161–195

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freeman, W.J. (1989). Analysis of Strange Attractors in EEGs with Kinesthetic Experience and 4-D Computer Graphics. In: Başar, E., Bullock, T.H. (eds) Brain Dynamics. Springer Series in Brain Dynamics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74557-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74557-7_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74559-1

  • Online ISBN: 978-3-642-74557-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics