Skip to main content

Cell Membranes, Electromagnetic Fields, and Intercellular Communication

  • Conference paper

Part of the book series: Springer Series in Brain Dynamics ((SSBD,volume 2))

Abstract

It has long been assumed that equilibrium models of cellular excitation that focus on depolarization of the membrane potential and associated massive changes in ionic equilibria across the cell membrane also offer an adequate basis for an understanding of the first events in cell membrane transductive coupling of molecular and electrochemical stimuli at the cell surface. For nervous tissue, it has been generally accepted that the Hodgkin-Huxley (1952) model appropriately describes both sequence and energetics of excitatory events. However, this brilliant thesis from relatively limited biological data was originally offered only in the context of a mathematical description of major perturbations in Na+ and K+ ionic equilibria that occur at a certain epoch in the course of excitation in giant nerve fibers of the squid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey WR (1975) Evidence for cooperative mechanisms in the susceptibility of cerebral tissue to environmental and intrinsic electric fields. In: Schmitt FO, Schneider DM, Crothers DM (eds) Functional linkage in biomolecular systems. Raven, New York, p 325

    Google Scholar 

  • Adey WR (1977) Models of membranes of cerebral cells as substrates for information storage. Biosystems 8: 163–178

    Article  PubMed  CAS  Google Scholar 

  • Adey WR (1981a) Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 61: 435–514

    PubMed  CAS  Google Scholar 

  • Adey WR ( 1981 b) Ionic nonequilibrium phenomena in tissue interactions with nonionizing electromagnetic fields. In: Illinger KH (ed) Biological effects of nonionizing radiation. American Chemical Soc, Washington DC, p 271

    Google Scholar 

  • Adey WR (1983) Molecular aspects of cell membranes as substrates for interactions with electromagnetic fields. In: Basar H, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the brain. Springer, Berlin Heidelberg New York, p 201

    Chapter  Google Scholar 

  • Adey WR (1984) Nonlinear, nonequilibrium aspects of electromagnetic field interactions at cell membranes. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems. Plenum, New York, p 3

    Chapter  Google Scholar 

  • Adey WR (1986) The sequence and energetics of cell membrane transductive coupling to intracellular enzyme systems. Bioelectrochem Bioenergetics 15: 447–456

    Article  CAS  Google Scholar 

  • Adey WR (1988 a) Cell membranes, the electromagnetic environment and cancer promotion. Neurochem Res 13:671–677

    Article  CAS  Google Scholar 

  • Adey WR ( 1988 b) Physiological signalling across cell membranes and cooperative influences of extremely low frequency electromagnetic fields. In: Frohlich H (ed) Biological coherence and response to external stimuli. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Adey WR, Lawrence AF (eds) (1984) Nonlinear electrodynamics in biological systems. Plenum, New York

    Google Scholar 

  • Adey WR, Bawin SM, Lawrence AF (1982) Effects of weak, amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex. Bioelectromagnetics 3: 295–307

    Article  PubMed  CAS  Google Scholar 

  • Balcer-Kubiczek E, Harrison GH (1985) Evidence for microwave carcinogenesis in vitro. Carcinogenesis 6: 859–864

    Article  PubMed  CAS  Google Scholar 

  • Bass L, Moore WJ (1968) A model of nervous excitation based on the Wien dissociation effect. In: Rich A, Davidson CM (eds) Structural chemistry and molecular biology, Freeman, San Francisco, p 356

    Google Scholar 

  • Bassett CAL, Mitchell N, Gaston SR (1982) Pulsing electromagnetic fields in ununited fractures and failed arthrodeses. J Am Med Assoc 247: 623–627

    Article  CAS  Google Scholar 

  • Bawin SM, Adey WR (1976) Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci USA 73: 1999–2003

    Article  PubMed  CAS  Google Scholar 

  • Bawin SM, Kaczmarek LK, Adey WR (1975) Effects of modulated VHF fields on the central nervous system. Ann NY Acad Sci 247: 74–91

    Article  PubMed  CAS  Google Scholar 

  • Bawin SM, Adey WR, Sabbot IM (1978 a) Ionic factors in release of 45Ca2+ from chick cerebral tissue by electromagnetic fields. Proc Natl Acad Sci USA 75: 6314–6318

    Article  CAS  Google Scholar 

  • Bawin SM, Sheppard AR, Adey WR (1978 b) Possible mechanisms of weak electromagnetic field coupling in brain tissue. Bioelectrochem Bioenergetics 5: 67–76

    Article  CAS  Google Scholar 

  • Bennett MVL, Trinkhaus JP (1970) Electrical coupling between embryonic cells by way of extracellular space and specialized junctions. J Cell Biol 44: 592–606

    Article  PubMed  CAS  Google Scholar 

  • Bennett MVL, Aljure E, Nakajima Y, Pappas GD (1963) Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science 141: 262–265

    Article  PubMed  CAS  Google Scholar 

  • Blackman CF, Elder J A, Weil CM, Benane SG, Eichinger DC, House DE (1979) Induction of calcium ion efflux from brain tissue by radio frequency radiation. Radio Sci. 14: 94–98

    Article  Google Scholar 

  • Blackman CF, Benane SG, Kinney LS, Joines WT, House DE (1982) Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat Res 92: 510–520

    Article  PubMed  CAS  Google Scholar 

  • Blackman CF, Benane SG, House DE, Joines WT (1985 a) Effects of ELF (1-120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6: 1–11

    Article  CAS  Google Scholar 

  • Blackman CF, Benane SG, Rabinowitz JR, House DE, Joines WT (1985 b) A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6: 327–338

    Article  CAS  Google Scholar 

  • Blank M (1976) Hemoglobin reactions as interfacial phenomena. J Electrochem Soc 123: 1653–1656

    Article  CAS  Google Scholar 

  • Blank M (1986) Electrical double blayers in membrane transport and nerve excitation. Bioelectrochem Soc, First Int School, Pleven, Bulgaria. Proceedings, p 26

    Google Scholar 

  • Byus CV, Lundak RL, Fletcher RM, Adey WR (1984) Alterations in protein kinase activity following exposure of cultured lymphocytes to modulated microwave fields. Bioelectromagnetics 5: 34–51

    Article  Google Scholar 

  • Byus CV, Pieper S, Adey WR (1987) The effect of environmentally significant low-energy 60 Hz electromagnetic fields upon the cancer-related enzyme ornithine decarboxylase. Carcinogenesis 8: 1385–1389

    Article  PubMed  CAS  Google Scholar 

  • Byus CV, Kartun K, Pieper S, Adey WR (1988) Microwaves act at cell membranes alone or in synergy with cancer-promoting phorbol esters to enhance ornithine decarboxylase activity. Cancer Res 48: 4222–4226

    PubMed  CAS  Google Scholar 

  • Cole KS (1940) Permeability and impermeability of cell membranes for ions. Cold Spring Harbor Symp Quant Biol 8: 110–122

    CAS  Google Scholar 

  • Delgado JMR, Leal J, Monteagudo JL, Garcia MG (1982) Embryological changes induced by weak, extremely low frequency electromagnetic fields J Anat 134: 533–552

    CAS  Google Scholar 

  • DeRiemer SA, Strong JA, Albert KA, Greengard P, Kaczmarek LK (1985) Enhancement of calcium current in Aplysia neurons by phorbol ester and kinase C. Nature 313: 313–316

    Article  Google Scholar 

  • Dewey MM, Barr L (1962) Intercellular connection between smooth muscle cells: the nexus. Science 137: 670–672

    Article  PubMed  CAS  Google Scholar 

  • Dixey R, Rein G (1982) 3H-Noradrenaline release potentiated in a clonal nerve cell line by low-intensity pulsed magnetic fields. Nature 296: 253–255

    Google Scholar 

  • Dutta SK, Subramaniam A, Ghosh B, Parshad R (1984) Microwave radiation-induced calcium efflux from brain tissue. Bioelectromagnetics 5: 71–78

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC (1953) The neurophysiological basis of mind. Clarendon, Oxford

    Google Scholar 

  • Edelman GM (1984) Cell adhesion molecules: a molecular basis for animal form. Sci 250 (4): 118–129

    CAS  Google Scholar 

  • Ehrlich YH, Davis TB, Bock DE, Kornecki E, Lenox R (1986) Exto-protein kinase activity on the external surface of neural cells. Nature 320: 67–69

    Article  PubMed  CAS  Google Scholar 

  • Elul R (1966) Applications of non-uniform electric fields. Part I. Electrophoretic evaluation of absorption. Trans Faraday Soc 62: 3484–3492

    Article  CAS  Google Scholar 

  • Elul R (1967) Fixed charge in the cell membrane. J Physiol (Lond) 189: 351–365

    CAS  Google Scholar 

  • Fitzsimmons RJ, Farley J, Adey WR, Baylink DJ (1986) Embryonic bone matrix formation is increased after exposure to a low-amplitude capacitively coupled electric field, in vitro. Biochim Biophys Acta 882: 51–56

    Article  PubMed  CAS  Google Scholar 

  • Fletcher WH, Shiu WW, Haviland DL, Ware CF, Adey WR (1986) A modulated-microwave field and tumor promoters similarly enhance the actions of alpha-lymphotoxins. Proceedings of the 8th annual meeting of the Bioelectromagnetics Society, p 12 (abstract)

    Google Scholar 

  • Fletcher WH, Byus CV, Walsh DA ( 1987 a) Receptor-mediated action without occupancy: a function for cell-cell communication in ovarian follicles. In: Mahesh V (ed) Regulation of ovarian and testicular function, Plenum, New York

    Google Scholar 

  • Fletcher WH, Shiu WW, Ishida TA, Haviland DL, Ware CF (1987 b) Resistance to the cytolytic action of lymphotoxin and tumor necrosis factor coincides with the presence of gap junctions uniting target cells. J Immunol 139(3): 1–7

    Google Scholar 

  • Furshpan EJ, Furakawa T (1962) Intracellular and extracellular responses of several regions of the Mauthner cell in the goldfish. J Neurophysiol 25: 732–771

    PubMed  CAS  Google Scholar 

  • Furshpan EJ, Potter DD (1959) Transmission at the giant motor synapses of the wayfish. J Physiol (Lond) 145: 289–325

    CAS  Google Scholar 

  • Gilula NB, Reeves OR, Steinbach A (1972) Metabolic coupling, ionic coupling and cell contacts. Nature 235: 262–265

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg EL (1984) A detergent-independent procedure for the isolation of gap junctions from rat liver. J Biol Chem 259: 9936–9943

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117: 500–517

    CAS  Google Scholar 

  • Hong CZ (1987) Static magnetic field influence on human nerve function. Arch Phys Med Rehabil 68: 162–164

    PubMed  CAS  Google Scholar 

  • Kaczmarek LK, Adey WR (1974) Weak electric gradients change ionic and transmitter fluxes in cortex. Brain Res 66: 537–540

    Article  Google Scholar 

  • Kanno J, Loewenstein WR (1966) Cell-to-cell passage of large molecules. Nature 212: 629–631

    Article  PubMed  CAS  Google Scholar 

  • Kavaliers M, Ossenkopp KP (1986) Magnetic field inhibition of morphine-induced analgesia and behavioral activity in mice: evidence for involvement of calcium ions. Brain Res 379: 30–38

    Article  PubMed  CAS  Google Scholar 

  • Lawrence AF, Adey WR (1982) Nonlinear wave mechanisms in interactions between excitable tissue and electromagnetic fields. Neurol Res 4: 115–153

    PubMed  CAS  Google Scholar 

  • Lawrence AF, McDaniel JC, Chang DB, Birge RR (1987) The nature of phonons and solitary waves in alpha-helical proteins. Biophys J 51: 785–793

    Article  PubMed  CAS  Google Scholar 

  • Lin-Liu S, Adey WR (1982) Low frequency, amplitude-modulated microwave fields change calcium efflux rates from synaptosomes. Bioelectromagnetics 3: 309–322

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein WR (1968) Communication through cell junctions. Implications in growth and differentiation. Dev Biol 2: 151–157

    Google Scholar 

  • Loewenstein WR (1979) Junctional intercellular communication and the control of growth. Biochim Biophys Acta 560: 1–65

    PubMed  CAS  Google Scholar 

  • Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61: 829–913

    PubMed  CAS  Google Scholar 

  • Loewenstein WR, Kanno Y (1966) Intercellular communication and the control of tissue growth. Nature 209: 1248–1250

    Article  PubMed  CAS  Google Scholar 

  • Luben RA, Cain CD (1984) Use of bone cell hormone responses to investigate bioelectromag- netic effects on membranes in vitro. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems. Plenum, New York, p 23

    Chapter  Google Scholar 

  • Luben RA, Cain CD, Chen MY, Rosen DM, Adey WR (1982) Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy, low-frequency fields. Proc Natl Acad Sci USA 79: 4180–4183

    Article  PubMed  CAS  Google Scholar 

  • Lyle DB, Schechter P, Adey WR, Lundak RL (1983) Suppression of T lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields. Bioelectromagnetics 4: 281–292

    Article  PubMed  CAS  Google Scholar 

  • Maddox J (1986) Physicists about to hijack DNA? Nature 324: 11

    Article  PubMed  CAS  Google Scholar 

  • Milham S (1985) Mortality in workers exposed to electromagnetic fields. Environ Health Perspect 62: 297–300

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar WH, Aerts RJ, Tertoolen LGJ, DeLast SW (1986) The epidermal growth factor-induced calcium signal in A431 cells. J Biol Chem 261: 279–285

    PubMed  CAS  Google Scholar 

  • Newmark P (1987) Oncogenes and cell growth. Nature 327: 101–102

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1983) Calcium, phospholipid and transmembrane signalling. Philos Trans R Soc Lond B302: 101–112

    Article  CAS  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface transduction and tumor promotion. Nature 308: 693–696

    Article  PubMed  CAS  Google Scholar 

  • Pasti G, Lacal JC, Warren BS, Aaronson SA, Blumberg PM (1986) Loss of mouse fibroblast response to phorbol esters restored by microinjected protein kinase C. Nature 324: 375–377

    Article  PubMed  CAS  Google Scholar 

  • Pitts JD, Finbow ME (1986) The gap junction. J Cell Sci [Suppl] 4: 239–266

    CAS  Google Scholar 

  • Radeke MJ, Misko TP, Hsu C, Herzenberger LA, Shooter EM (1987) Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 325: 393–397

    Article  Google Scholar 

  • Revel JP, Karnovsky MJ (1967) Hexagonal arrays of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33: C7–C12

    Article  PubMed  CAS  Google Scholar 

  • Riedel H, Schlessinger J, Ullrich A (1986) A chimeric ligand binding verb B/EGF receptor retains transforming potential. Science 236: 197–200

    Article  Google Scholar 

  • Robertson JD (1963) The occurrence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J Cell Biol 19: 201–221

    Article  PubMed  CAS  Google Scholar 

  • Savitz DA, Wachtel H, Barnes F (1986) National contractor’s review. US Department of Energy, Office of Energy Storage and Distribution, Washington DC, and Electric Power Research Institute Health Studies Program Proceedings, Palo Alto, November

    Google Scholar 

  • Semm P (1983) Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp Biol Physiol 76A: 683–692

    Article  Google Scholar 

  • Semm P, Demaine C (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol 159: 619–625

    Article  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731

    Article  PubMed  CAS  Google Scholar 

  • Trosko JE, Chang CC (1986) Oncogene and chemical inhibition of gap-junctional intercellular communication: implications for teratogenesis and carcinogenesis. In: Genetic toxicology of environmental chemicals, part B: Genetic effects and applied mutagenesis. Liss, New York, P21

    Google Scholar 

  • Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, Downard J, Mayes ELV, Whittle N, Waterfield MD, Seeburg PH (1985) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309: 428–431

    Google Scholar 

  • Unwin PMT, Ennis PD (1984) Two configurations of a channel-forming membrane protein. Nature 307: 609 - 613

    Article  PubMed  CAS  Google Scholar 

  • Van der Kloot WG, Cohen I (1979) Membrane surface potential changes may alter drug interactions: an example, acetyl choline and curare. Science 203: 1351–1352

    Article  PubMed  Google Scholar 

  • Warner AE, Guthrie SC, Gilula NB (1984) Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature 311: 127–131

    Article  PubMed  CAS  Google Scholar 

  • Welker HA, Semm P, Willig RP, Wiltschko W, Vollrath L (1983) Effects of an artificial magnetic field on serotonin-TV-acetyltransferase activity and melatonin content of the rat pineal gland. Ex Brain Res 50: 426–531

    CAS  Google Scholar 

  • Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Am, J Epidemiol 109: 273–284

    CAS  Google Scholar 

  • Yotti LP, Chang CC, Trosko JE (1979) Elimination of metabolic cooperation in Chinese hamster cells by a tumor promoter. Science 206: 1089–1091

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adey, W.R. (1989). Cell Membranes, Electromagnetic Fields, and Intercellular Communication. In: Başar, E., Bullock, T.H. (eds) Brain Dynamics. Springer Series in Brain Dynamics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74557-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74557-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74559-1

  • Online ISBN: 978-3-642-74557-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics