Skip to main content

The CERP: Event-Related Perturbations in Steady-State Responses

  • Conference paper
Book cover Brain Dynamics

Part of the book series: Springer Series in Brain Dynamics ((SSBD,volume 2))

Abstract

In brain research, the term “steady-state response” (SSR) refers to electrophysiological activity driven by a train of stimuli delivered at a high enough rate so that responses evoked by successive stimuli overlap (Regan 1982). Visual SSRs are evoked by probe stimuli delivered at rates between a few and 60 Hz; these can be sinusoidally modulated light, shifts in checkerboard patterns, or trains of brief flashes (Mundy-Castle 1953; Regan 1982). The auditory SSR reaches a response amplitude maximum at rates of stimulation near 40 Hz (Galambos et al. 1981); auditory probe stimuli are often trains of clicks or brief tone pips, but sinusoidally amplitude-modulated (Green at al. 1986; Kuwada et al. 1986; Rickards and Clark 1984) or frequency-modulated (Rodriguez et al. 1986) continuous tones can also be used. Recent research on auditory SSRs has been encouraged by their possible application in audiology (Kankkunen and Rosenhall 1985; Klein 1983; Makeig and Galambos 1983; Picton et al. 1987; Sammeth and Barry 1985; Shallop 1983; Stapells et al. 1987; 1988; Sturzebecher et al. 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Başar E (1980) Brain dynamics. Elsevier, Amsterdam

    Google Scholar 

  • Bourbon WT, Will KW, Gary HE, Papanicolaou AC (1987) Habituation of auditory event-related potentials: a comparison of self-initiated and automated stimulus trains. Electroencephalogr Clin Neurophysiol 66 (2): 160–166

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Adler LE, Gerhardt GA, Waldo M, Baker N, Rose GM, Drebing C, Nagamoto H, Bickford-Wimer P, Franks R (1987) Neuro biological studies of sensory gating in schizophrenia. Schizophrenia Bull 13 (4): 669–678

    CAS  Google Scholar 

  • Freeman WJ, Di Prisco GV (1986) EEG spatial pattern differences with discriminated odors manifest chaotic and limit cycle attractors in olfactory bulb of rabbits. In. Palm G, Aertsen A (eds) Brain theory. Springer, Berlin Heidelberg New York, pp 97–119

    Chapter  Google Scholar 

  • Galambos R (1982) Tactile and auditory stimuli repeated at high rates (30-50 per s) produce similar event related potentials. Ann NY Acad Sci 388: 722–728

    Article  PubMed  CAS  Google Scholar 

  • Galambos R, Makeig S (1988) Dynamic changes in steady-state potentials. In. Başar E (ed) Dynamics of sensory and cognitive processing of the brain. Springer, Berlin Heidelberg New York, pp 102–122 (Springer series in brain dynamcis, vol 1 )

    Google Scholar 

  • Galambos R, Makeig S, Talmachoff P (1981) A 40 Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78(4)-. 2643–2647

    Article  PubMed  CAS  Google Scholar 

  • Green GGR, Rees A, Kay R (1986) Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hear Res 23: 123–133

    Article  PubMed  Google Scholar 

  • Huis in’t Veld F, Osterhammel P, Terkildsen K (1977) Frequency-following auditory brainstem responses in man. Scand Audiol 6: 27–34

    Article  PubMed  Google Scholar 

  • Jepsen O (1951) The threshold of the reflexes of the intratympanic muscles in a normal material examined by means of the impedance method. Acta Otolaryngol 39: 406–408

    Article  PubMed  CAS  Google Scholar 

  • Kankkunen A, Rosenhall U (1985) Comparison between thresholds obtained with pure-tone audiometry and the 40-Hz middle latency response. Scand Audiol 14: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Klein AJ (1983) Properties of the brainstem response slow-wave component. II. Frequency specificity. Arch Otolaryngol 109: 74–78

    Article  PubMed  CAS  Google Scholar 

  • Kuwada S, Batra R, Mäher VL (1986) Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 21: 179–192

    Article  PubMed  CAS  Google Scholar 

  • Linden RD, Picton TW, Hamel G, Campbell KB (1987) Human auditory steady-state evoked potentials during selective attention. Electroencephalogr Clin Neurophysiol 66 (2): 137–144

    Article  Google Scholar 

  • Makeig S (1985) Studies in musical psychobiology. Doctoral dissertation, UCSD, San Diego, University Microfilms, Ann Arbor

    Google Scholar 

  • Makeig S, Galambos R (1983) Phase consistency of evoked responses to auditory stimuli delivered at high rates. J Acoust Soc Am 74 (Suppl 1): S65

    Article  Google Scholar 

  • Makeig S, Galambos R (1987) Event-related perturbations in auditory steady-state potentials. Soc Neurosci Abstr 13: 331

    Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brainstem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1: 455–473

    PubMed  CAS  Google Scholar 

  • Mundy-Castle AC (1953) An analysis of central responses to photic stimulation in normal adults. Electroencephalogr Clin Neurophysiol 5: 1

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim AV, Schafer RW (1975) Digital signal processing. Prentice-Hall, London

    Google Scholar 

  • Picton TS, Hillyard S, Galambos R (1974) Habituation and attention in the auditory system. In: Keidel WD, Neff WD (eds) The auditory system: clinical and special topics. Springer, Berlin Heidelberg New York, pp 343–387 (Handbook of sensory physiology, vol V/3)

    Google Scholar 

  • Picton TW, Vajsar J, Rodriguez R, Campbell KB (1987) Reliability estimates for steady-state evoked potentials. Electroencephalogr Clin Neurophysiol 68 (2): 119–131

    Article  PubMed  CAS  Google Scholar 

  • Regan D (1968) A high frequency mechanism which underlies visual evoked potentials. Electroencephalogr Clin Neurophysiol 25: 231–237

    Article  PubMed  CAS  Google Scholar 

  • Regan D (1982) Comparison of transient and steady-state methods. In: Bodis-Wollner I (ed) Evoked potentials. NY Academy of Science, New York, pp 45–71 (Annals of the New York Academy of Science, vol 388 )

    Google Scholar 

  • Rickards FW, Clark GM (1984) Steady-state evoked potentials to amplitude modulated tones. In: Nodar RH, Barber C (eds) Evoked potentials. II. Butterworth, Boston, pp 163–169

    Google Scholar 

  • Rodriguez R, Picton T, Linden D, Hammel G, Laframboise G (1986) Human auditory steady state responses: effects of intensity and frequency. Ear Hear 7: 300–313

    Article  PubMed  CAS  Google Scholar 

  • Sammeth CA, Barry SJ (1985) The 40-Hz event-related potential as a measure of auditory sensitivity in normals. Scand Audiol 14: 51–55

    Article  PubMed  CAS  Google Scholar 

  • Shallop JK (1983) Electric response audiometry: the morphology of normal responses. Adv Otorhinolaryngol 29: 124–139

    PubMed  CAS  Google Scholar 

  • Stapells DR, Makeig S, Galambos R (1987) Auditory steady-state responses: threshold prediction using phase coherence. Electroencephalogr Clin Neurophysiol 67: 260–270

    Article  PubMed  CAS  Google Scholar 

  • Stapells DR, Galambos R, Costello JA, Makeig S (1988) Inconsistency of auditory middle latency and steady-state responses in infants. Electroencephalogr Clin Neurophysiol 71: 289–295

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Demetrescu M (1962) Reticular facilitation of responses to acoustic stimuli. Electroencephalogr Clin Neurophysiol 14: 21–36

    Article  PubMed  CAS  Google Scholar 

  • Sturzebecher E, Kühne W, Berndt H (1985) Detectability of the acoustically evoked composite response (40 Hz potential) near threshold. Scand Audiol 14: 23–25

    Article  PubMed  CAS  Google Scholar 

  • Van Winsom W, Sergeant J, Genze R (1984) The functional significance of event-related desynchronization of alpha rhythm in attentional and activating tasks. Electroencephalogr Clin Neurophysiol 58: 519–524

    Article  Google Scholar 

  • Woods DL, Clayworth CC (1986) Age-related changes in human middle latency evoked potentials. Electroencephalogr Clin Neurophysiol 65 (4): 297–303

    Article  PubMed  CAS  Google Scholar 

  • Woods DL, Courchesne E (1986) The recovery functions of auditory event-related potentials during split-second discriminations. Electroencephalogr Clin Neurophysiol 65 (4): 304–315

    Article  PubMed  CAS  Google Scholar 

  • Woods DL, Courchesne E, Hillyard SA, Galambos R (1980) Recovery cycles of event-related potentials in multiple detection tasks. Electroencephalogr Clin Neurophysiol 50:335–347

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makeig, S., Galambos, R. (1989). The CERP: Event-Related Perturbations in Steady-State Responses. In: Başar, E., Bullock, T.H. (eds) Brain Dynamics. Springer Series in Brain Dynamics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74557-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74557-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74559-1

  • Online ISBN: 978-3-642-74557-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics