Brain Dynamics pp 279-289 | Cite as

Subcortical Evoked Potential Correlates of Early Information Processing: Mismatch Negativity in Cats

  • V. Csépe
  • G. Karmos
  • M. Molnár
Part of the Springer Series in Brain Dynamics book series (SSBD, volume 2)

Abstract

A negative component of event-related brain potentials which is specific to stimulus change (Näätänen and Gaillard 1983; Näätänen 1986), the “mismatch negativity” (MMN), seems to reflect an automatic comparing process. This comparison is thought to be between the neural representation of standard stimuli — the “neuronal model of the stimulus” (Sokolov 1960) — and the neuronal pattern elicited by deviant stimuli. Although electrical scalp recordings (Simson et al. 1977) and magnetoencephalographic data (Elberling et al. 1980, 1982; Hari et al. 1982, 1984) suggest that the generators underlying the MMN involve several mechanisms in the auditory cortex, they give no information about other possible mechanisms on which the MMN may depend.

Keywords

Cage Sine Topo Nembutal Alho 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butler RA, Diamond IT, Neff WD (1957) Role of auditory cortex in discrimination of changes in frequency. J Neurophysiol 20: 108–120PubMedGoogle Scholar
  2. Csépe V, Karmos G, Molnär M (1987) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat—animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol 66: 571–578PubMedCrossRefGoogle Scholar
  3. Elberling C, Bäk C, Kofoed B, Lebech J, Saermark K (1980) Magnetic auditory responses from the human brain. A preliminary report. Scand Audiol 9: 185–190PubMedCrossRefGoogle Scholar
  4. Elberling C, Bak C, Kofoed B, Lebech J, Saermark K (1982) Auditory magnetic fields. Source location and “tonotopical organization” in the right hemisphere of the human brain. Scand Audiol 11: 59–63CrossRefGoogle Scholar
  5. Goldberg JM, Neff WD (1961) Frequency discrimination after bilateral ablation of cortical auditory areas. J Neurophysiol 24: 119–128PubMedGoogle Scholar
  6. Hari R, Kaila K, Katila T, Tuomisto T, Varpula T (1982) Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54: 561–569PubMedCrossRefGoogle Scholar
  7. Hari R, Hamalainen M, Ilmoniemi R, Kaukoranta E, Reinikainen K, Salminen J, Alho K, Naatanen R, Sams M (1984) Responses of the primary auditory cortex to pitch changes: neuromagnetic recordings in man. Neurosci Lett 50: 127–132PubMedCrossRefGoogle Scholar
  8. Karmos G (1982) Auditory cortical correlates of motivation. In: Lissak K, Molnar P (eds) Motivation and the neural and neurohumoral factors in regulation of behaviour. Akademiai Kiado, Budapest, pp 141–158Google Scholar
  9. Karmos G, Martin J, Kellenyi L, Bauer M (1970) Constant intensity sound stimulation with a bone conductor in the freely moving cat. Electroencephalogr Clin Neurophysiol 28: 637–638PubMedCrossRefGoogle Scholar
  10. Lopes da Silva FH, Groenewegen HJ, Holsheimer J, Room P, Witter MP, van Groen Th, Wadman WJ (1985) The hippocampus as a set of partially overlapping segments with a topographically organized system of inputs and outputs: the entorhinal cortex as a sensory gate, the medial septum as a gain-setting system and the ventral striatum as a motor interface. In: Buzsaki G, Vanderwolf CH (eds) Electrical activity of the archicortex. Akademiai Kiado, Budapest, pp 83–106Google Scholar
  11. Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond 262: 23–81CrossRefGoogle Scholar
  12. Molnar M, Karmos G, Csepe V (1986) Laminar analysis of intracortical auditory evoked potentials during the wakefulness-sleep cycle in the cat. Int J Psychophysiol 3: 171–182PubMedCrossRefGoogle Scholar
  13. Näätänen R (1986) Neurophysiological basis of the echoic memory as suggested by event-related potentials and magnetoencephalogram. In: Klix F, Hagendorf H (eds) Human memory and cognitive capabilities, mechanisms and performances. Elsevier, Amsterdam, pp 615–628Google Scholar
  14. Näätänen R, Gaillard AWK (1983) The orienting reflex and the N2 deflection of the ERP. In: Gaillard AWK, Ritter W (eds) Tutorials in event-related potential research: endogenous components. Elsevier, Amsterdam, pp 119–141CrossRefGoogle Scholar
  15. Näätänen R, Gaillard AWK, Mantysalo S (1978) Early selective attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42: 313–329CrossRefGoogle Scholar
  16. Näätänen R, Gaillard AWK, Mantysalo S (1980) Brain potential correlates of voluntary and involuntary attention. In: Kornhuber HH, Deecke L (eds) Motivation, motor and sensory processes of the brain: electrical potentials, behaviour and clinical use. Elsevier, Amsterdam, pp 343–348, (Progress in brain research, vol 54 )Google Scholar
  17. Sams M, Paavilainen P, Alho K, Naatanen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62: 437–448PubMedCrossRefGoogle Scholar
  18. Simson R, Vaughan HG, Ritter W (1977) The scalp topography of potentials in auditory and visual discrimination tasks. Electroencephalogr Clin Neurophysiol 2: 528–535Google Scholar
  19. Snider RS, Niemer WT (1961) A stereotaxic atlas of the cat brain. University of Chicago Press, ChicagoGoogle Scholar
  20. Sokolov EN (1960) Neuronal models and the orienting reflex. In: Brazier MA (ed) The central nervous system and behaviour. Macy, New YorkGoogle Scholar
  21. Sokolov EN (1975) The neuronal mechanisms of the orienting reflex. In: Sokolov EN, Vinogradova OS (eds) The neuronal mechanisms of the orienting reflex. Erlbaum, Hillsdale, pp 217–235Google Scholar
  22. Teyler TJ, DiScenna P (1986) The hippocampal memory indexing theory. Behav Neurosci 2: 147–154CrossRefGoogle Scholar
  23. Thompson RF (1960) Function of auditory cortex of cat in frequency discrimination. J Neurophysiol 23: 321–334PubMedGoogle Scholar
  24. Van Groen Th, Witter MP (1985) Electrophysiological and tracing study of the septotemporal distribution of entorhinal projections to the hippocampus in the cat. In: Buzsaki G, Vanderwolf CH (eds) Electrical activity of the archicortex. Akademiai Kiado, Budapest, pp 107–123Google Scholar
  25. Vinogradova OS (1975) The hippocampus and the orienting reflex. In: Sokolov EN, Vinogradova OS (eds) Neuronal mechanisms of the orienting reflex. Erlbaum, Hillsdale, pp 128–154Google Scholar
  26. Witter MP, Groenewegen HJ (1984) Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat. J Comp Neurol 224: 371–385PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • V. Csépe
  • G. Karmos
  • M. Molnár

There are no affiliations available

Personalised recommendations