Advertisement

Application of the Coherent Anomaly Method to d-Dimensional Ising Spin Glasses

  • S. Fujiki
Part of the Springer Series in Synergetics book series (SSSYN, volume 43)

Abstract

The spin-glass susceptibility is analyzed by the Coherent Anomaly Method (CAM) [1] applied to a series of closed-form approximations in the Cluster Variation Method (CVM) [2] for the random-bond Ising model on the square, cubic and hyper-cubic lattices. No spin-glass transition is obtained for the square lattice, while for the cubic lattice and higher dimensional lattices spin-glass transitions are obtained; the transition temperature and the exponent of the spin-glass susceptibility obtained for the cubic lattice are in good agreement with those by Monte Carlo simulations [3].

References

  1. 1.
    M. Suzuki, J. Phys. Soc. Jpn. 55 (1986) 4205. M. Suzuki, M. Katori and X. Hu, J. Phys. Soc. Jpn. 56 (1987) 3092.CrossRefADSGoogle Scholar
  2. 2.
    T. Morita, J. Math. Phys. 13 (1972) 115.CrossRefADSGoogle Scholar
  3. 3.
    A.T. Ogielski, Phys. Rev. B 32 (1985) 7384. E.N. Bhatt and A.P. Young, Phys. Rev. Lett. 54 (1985) 924.CrossRefADSGoogle Scholar
  4. 4.
    S.F. Edwards and P.W. Anderson, J. Phys. F 5 (1975) 965.CrossRefADSGoogle Scholar
  5. 5.
    S. Fujiki and S. Katsura, Prog. Theor. Phys. 65 (1981) 1130. M. Suzuki, Phys. Lett. A 127 (1988) 410.CrossRefADSGoogle Scholar
  6. 6.
    S. Katsura and S. Fujiki, J. Phys. C 13 (1980) 4711, 4723.CrossRefADSGoogle Scholar
  7. 7.
    R. Kikuchi, Phys. Rev. 81 (1951) 988.CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • S. Fujiki
    • 1
  1. 1.Department of Engineering Science, Faculty of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations