Advertisement

Scaling Theory of the Ordered Phase of Real Spin Glasses

  • M. A. Moore
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 43)

Abstract

Theoretical approaches to spin glasses can be divided into two main categories. The first approach envisages constructing the mean-field solution of (say) the Edwards-Anderson1(EA) Hamiltonian and then systematically expanding about it to describe the properties of three-dimensional spin glasses. Producing a mean-field theory is equivalent to solving the Sherrington-Kirkpatrick2 (SK) spin-glass model. This model is now well understood and the solution reveals a rich structure of many pure states related by an ultrametric topology3. Fig 1(a) shows the expected phase diagram in a field. The SK model is the infinite dimensional limit of the EA Hamiltonian. Recent studies by Kondor4 suggest that the ultrametric behaviour, de Almeida-Thouless (AT)5 line etc. will not exist below six dimensions. Thus, the program of expanding about the customary mean-field solution to obtain the properties of spin glasses whose dimensionality is less than six does not look promising.

Keywords

Spin Glass Heisenberg Ferromagnet Replica Symmetry Breaking Experimental Time Scale Ising Spin Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.F. Edwards and P.W. Anderson: J.Phys F5, 965 (1975)CrossRefADSGoogle Scholar
  2. 2.
    D. Sherrington and S. Kirkpatrick: Phys.Rev.Lett. 35, 1972 (1975)CrossRefGoogle Scholar
  3. 3.
    M Mezard, G. Parisi and M. A. Virasoro: Spin Glass Theory and Beyond. ( World Scientific, Singapore 1987 )zbMATHGoogle Scholar
  4. 4.
    I. Kondor: to be publishedGoogle Scholar
  5. 5.
    J.R.T de Almeida and D. J. Thouless: J.Phys. A11, 983 (1978)ADSGoogle Scholar
  6. 6.
    For a review of the scaling theory see A.J. Bray and M.A. Moore: in Heidelberg Colloquium on Glassy Dynamics, Lecture Notes in Physics, 275, (Springer Verlag 1987 )Google Scholar
  7. 7.
    W.L. McMillan: J.Phys C17, 3179 (1984)ADSGoogle Scholar
  8. 8.
    D.S. Fisher and D. A. Huse: Phys. Rev. Lett. 56, 1601 (1986) and to be publishedCrossRefADSGoogle Scholar
  9. 9.
    A.J.Bray and M.A. Moore: Phys. Rev. Lett. 58, 57 (1987)CrossRefADSGoogle Scholar
  10. 10.
    J.R. Banavar and M. Cieplak: Phys. Rev. Lett. 48, 832 (1982)CrossRefADSGoogle Scholar
  11. 11.
    W.L. McMillan: Phys. Rev. B31, 340 (1985), B29, 4026 (1984)ADSGoogle Scholar
  12. 12.
    A. J. Bray and M.A. Moore: J. Phys. C17, L469 (1984)Google Scholar
  13. 13.
    Y. Imry and S.K. Ma, Phys. Rev. Lett. 35, 1399 (1975)CrossRefADSGoogle Scholar
  14. 14.
    A. J. Bray and J.R. Banavar, Phys. Rev. B35, 8888 (1987)ADSGoogle Scholar
  15. 15.
    G.J.M. Koper and H.J. Hilhorst, J. de Physique, 49, 429 (1988)CrossRefGoogle Scholar
  16. 16.
    L. Sandlund, P. Svedlindh, P. Granbery, P. Nordblad and L. Lundgren, to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • M. A. Moore
    • 1
  1. 1.Department of Theoretical PhysicsUniversity of ManchesterManchesterUK

Personalised recommendations