Advertisement

Random Interfaces and the Physics of Microemulsions

  • S. A. Safran
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 43)

Abstract

The structures of mixtures of amphiphiles, water and oil can sometimes show only microscopic correlations between the components (e.g. a three component solution) and sometimes exhibit long-range ordered structures (e.g. lyotropic liquid crystals). The term microemulsion in its most general use, connotes a thermodynamically stable, fluid, oil-water-surfactant mixture [1]. In practice, microemulsions are taken to consist of structures with intermediate-range correlations. The oil and water regions are fairly well separated and the surfactant molecules are organized as monolayers at the internal water-oil interfaces. There are long-range correlations between the oil and water molecules in that they are separated on length scales of the order of hundreds of Angstroms. In addition, there are long range correlations among the surfactant molecules which self-assemble into a monolayer film at the set of internal water-oil interfaces. In this respect, microemulsions are different from three-component solutions. However, the set of interfaces which comprise the microemulsion do not show long range order comparable to that found in lyotropic liquid crystals, where there exists a periodic array of surfactant bilayers separating adjacent water or oil regions.

Keywords

Phase Behavior Surfactant Molecule Thermal Fluctuation Persistence Length Lamellar Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a general survey see (a) Surfactants in Solution, ed. K. Mittal and B. Lindman, (Plenum, N.Y., 1984), and ibid 1987; (b) Physics of Complex and Supermolecular Fluids, ed. S.A. Safran and N.A. Clark (Wiley, N.Y., 1987 ).Google Scholar
  2. 2.
    S.A. Safran, D. Roux, M. Cates, D. Andelman, Phys. Rev. Lett. 57, 491 (1986), and in Surfactants in Solution: Modern Aspects, ed. K. Mittal, (Plenum, N.Y., in press).ADSCrossRefGoogle Scholar
  3. 3.
    David Andelman, M. Cates, D. Roux, and S. A. Safran, J. Chem. Phys. 87, 7229 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    D. Andelman, S. A. Safran, D. Roux, and M. Cates in Langmuir, in press.Google Scholar
  5. 5.
    M. E. Cates, D. Roux, D. Andelman, S. T. Milner, and S. A. Safran, Europhysics Lett. 5, 733 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    S. T. Milner, S. A. Safran, D. Andelman, M. Cates, and D. Roux, J. de Phys. (Paris) 49, 1065 (1988).CrossRefGoogle Scholar
  7. 7.
    A. Calje, V.G.M. Ageroi, A. Yrij in Micellization, Solubilization, and Microemulsions, ed. K. Mittal, (Plenum, N.Y.) 1977, p. 779; R. Ober and C. Taupin, J. Phys. Chem. 84, 2418 (1980); A.M. Cazabat and D. Langevin, J. Chem. Phys. 74, 3148 (1981); D. Roux, A.M. Bellocq, P. Bothorel in Ref. la, p. 1843; J.S. Huang, S.A. Safran, M.V. Kim, G.S. Grest, M. Kotlarchyk, N. Quirke, Phys. Rev. Lett. 53, 592 (1983); M. Kotlarchyk, S. I. Chen, J.S. Huang, M.V. Kim, Phys. Rev. A 29, 2054 (1984).Google Scholar
  8. 8.
    C. Huh, J. Coll. Interface Sei. 97, 201 (1984) and 71 (1979); S.A. Safran and L.A. Turkevich, Phys. Rev. Lett. 50, 1930 (1983); S.A. Safran, L.A. Turkevich, P.A. Pincus, J. Phys. (Paris) Lett. 45, L69 (1984).CrossRefGoogle Scholar
  9. 9.
    S.A. Safran, L.A. Turkevich, P.A. Pincus, J. Phys. (Paris) Lett. 45, L69 (1984).Google Scholar
  10. 10.
    Y. Talmon and S. Prager, J. Chem. Phys. 69, 2984 (1978) and 76, 1535 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    P. G. de Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).CrossRefGoogle Scholar
  12. 12.
    J. Jouffroy, P. Levinson, P.G. de Gennes, J. Phys. (Paris) 43, 1241 (1982).CrossRefGoogle Scholar
  13. 13.
    B. Vidom, J. Chem. Phys. 81, 1030 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    W. Helfrich, Z. Naturforsch. 28a, 693 (1973).MathSciNetGoogle Scholar
  15. 15.
    W. Jahn and R. Strey, J. Phys. Chem. 92, 2294 (1988).CrossRefGoogle Scholar
  16. 16.
    S. Alexander, J. de Phys. Lett. (Paris), 39, 1 (1978).CrossRefGoogle Scholar
  17. 17.
    J.C. Wheeler and B. Vidom, J. Am. Chem. Soc. 90, 3064 (1968); B. Vidom, J. Chem. Phys. 84, 6943 (1986).CrossRefGoogle Scholar
  18. 18.
    M. Schick and V. H. Shih, Phys. Rev. B 34, 1797 (1986) and Phys. Rev. Lett. 59, 1205 (1987); K. Chen, C. Ebner, C. Jayaprakash, R. Pandit, J. Phys. C 20, L361 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    M. Kahlweit, R. Strey, P. Eirman, and D. Haase, Langmuir, 1, 281 (1985); Ang. Chem., Int. Ed. Engl. 24, 654 (1985); J. PHys. Chem. 91, 1553 (1987); J. Phys. Chem. 90, 671 (1986); D. H. Smith, J. Coll. Int. Sci. 108, 471 (1985).CrossRefGoogle Scholar
  20. 20.
    L.E. Scriven, in Micellization, Solubilization, and Microemulsions, ed. K. Mittal, ( Plenum, N.Y., 1977 ), p. 877.Google Scholar
  21. 21.
    V. Helfrich, J. Phys. (Paris) 46, 1263 (1985); ibid. 48, 285 (1987).CrossRefGoogle Scholar
  22. 22.
    L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 1690 (1985); D. Foerster, Phys. Lett. 114A, 115 (1986); H. Kleinert, Phys. Lett. 114A, 263 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. Lett. 57, 263 (1986).CrossRefGoogle Scholar
  24. 24.
    V. Helfrich, Z. Naturforsch. 33a, 305 (1978).ADSGoogle Scholar
  25. 25.
    C. R. Safinya, D. Roux, G. Smith, S. K. Sinha, P. Dimon, N. Clark, A. M. Bellocq, Phys. Rev. Lett. 57, 2718 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    D. Huse and S. Leibler, J. Phys. (Paris), 49, 605 (1988).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • S. A. Safran
    • 1
  1. 1.Corporate ResearchExxon Research and EngineeringAnnandaleUSA

Personalised recommendations