Advertisement

Higher-Order Commensurate, Incommensurate and Liquid Phases of an Atomic Monolayer System on a Periodic Substrate

  • H. Mitani
Part of the Springer Series in Synergetics book series (SSSYN, volume 43)

Abstract

We study a grand canonical system of a two-dimensional(2D) competitive model where a monolayer of atoms is located on a graphite-type substrate potential. The Hamiltonian is as follows:
$$H = \frac{{2A}}{{21}}\mathop \Sigma \limits_{ < i,j >} \frac{1}{{|{{\vec x}_i} - {{\vec x}_j}{|^5}}} + \frac{{{E_s}}}{6}\mathop \Sigma \limits_i^M \left( {3 - \cos \left( {{{\vec g}_1} \cdot {{\vec x}_i}} \right) - \cos \left( {{{\vec g}_2} \cdot {{\vec x}_i}} \right) - \cos \left( {{{\vec g}_3} \cdot {{\vec x}_i}} \right)} \right),$$
(1)
where \({\vec x_i}\left( {i = 1, \cdot \cdot \cdot ,M} \right)\) is the 2D location of the atoms and \({\vec g_j}\left( {j = 1,2,3} \right)\) are the reciprocal vectors of the substrate lattice.

Keywords

Phase Diagram Phase Transition Temperature Competitive Model Substrate Lattice Periodic Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    H. Mitani and K. Niizeki, J.Phys.C21(1988)1895–1903ADSGoogle Scholar
  2. 2).
    M. Mori, S. C. Moss, Y. M. Yan and H. Zabel, Phys.Rev.B25(1982)1287–1296; Y. Yamada and I. Naiki, J.Phys.Soc.Jpn.51(1982)2174-2180ADSGoogle Scholar
  3. 3).
    H.Mitani, to be submitted to J.Phys.C Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • H. Mitani
    • 1
  1. 1.Institute for Solid State PhysicsUniversity of TokyoMinato-ku, TokyoJapan

Personalised recommendations