Skip to main content

The Integration of Cardenolide Biosynthesis in the Differentiation Program “Somatic Embryogenesis” of Digitalis lanata

  • Conference paper
Primary and Secondary Metabolism of Plant Cell Cultures II

Abstract

The restriction to certain specialized cells, tissues, or organs, as well as to certain developmental stages is the most outstanding characteristic of secondary metabolism. In several experimental systems it was shown that this “phase dependence” is caused by the synthesis of the enzymes forming the secondary compounds shortly before or during the expression of the biosynthesis of secondary products. This demonstrated that secondary metabolism is the result of differential gene expression [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luckner M, Nover L, Boehm H (1977) Secondary metabolism and cell differentiation (Molecular biology, biochemistry and biophysics, vol 23). Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Luckner M (1980) Expression and control of secondary metabolism. In: Bell EA, Charlwood B (eds) Encyclopedia of plant physiology, New Ser, vol 8: Secondary plant products. Springer, Berlin Heidelberg New York, pp 23–63

    Google Scholar 

  3. Luckner M (1984) Secondary metabolism in microorganisms, plants, and animals. Fischer, Jena; Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Luckner H, Diettrich B (1987) Biosynthesis of cardenolides in cell cultures of Digitalis lanata — the result of a new strategy. In: Green CE, Somers DA, Hackert WP, Biesboer DD (eds) Plant tissue and cell culture. Liss, New York, pp 187–197

    Google Scholar 

  5. Luckner M, Diettrich B (1985) Formation of cardenolides in cell and organ cultures of Digitalis lanata. In: Neumann K-H, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin Heidelberg New York Tokyo, pp. 154–163

    Chapter  Google Scholar 

  6. Luckner M, Diettrich B (1989) Cardenolides. In: Constabel F (ed) Cell culture and somatic cell genetics of plants, vol 5: Phytochemicals in plant cell cultures. Academic Press, New York London, pp 193–212

    Google Scholar 

  7. Weiler EW, Zenk MH (1976) Radioimmunoassay for the determination of digoxin and related compounds in Digitalis lanata. Phytochemistry 15:1537–1545

    Article  CAS  Google Scholar 

  8. Vogel E, Luckner M (1981) Distribution of cardenolides in Digitalis lanata. Planta Med 41:161–165

    Article  PubMed  CAS  Google Scholar 

  9. Hagimori M, Matsumoto T, Mikami Y (1984a) Digitoxin biosynthesis in isolated mesophyll cells and cultured cells of Digitalis. Plant Cell Physiol 25:947–953

    CAS  Google Scholar 

  10. Diettrich B, Steup C, Neumann D, Scheibner H, Reinbothe C, Luckner M (1986) Morphogenetic capacity of cell strains derived from filament, leaf and root expiants of Digitalis lanata. J Plant Physiol 124:441–453

    Google Scholar 

  11. Rücker W, Jentzsch K, Wichtl M (1976) Wurzeldifferenzierung und Glykosidbildung bei in vitro kultivierten Blattexplantaten von Digitalis purpurea L. Z Pflanzenphysiol 80:323–335

    Google Scholar 

  12. Breuel K, Poetter H, Luckner M, Diettrich B, Springer M, Oertel C (1984) Verfahren zur virusfreien vegetativen Vermehrung und Erhaltung von Digitalis-Hochleistungspflanzen. GDR-Patent DD 207 731

    Google Scholar 

  13. Luckner M, Diettrich B, Springer M, Breuel K, Oertel C (1984) Verklonung von Digitalis-lanata-Hochleistungspflanzen durch Sproß Spitzenkultur. Int Vortragstag Methoden und Verfahren der Züchtung, des Anbaues, der Sammlung und der industriellen Verarbeitung von Arznei-und Gewürzpflanzen, Artern, 18. — 22. 6. 1984. Vortragstexte, Pt 1. Pharmazeutisches Werk, Halle, pp 113–127

    Google Scholar 

  14. Schöner S, Reinhard E (1986) Long-term cultivation of Digitalis lanata clones propagated in vitro: cardenolide content and the regeneration of plants. Planta Med 52:478–481

    Article  Google Scholar 

  15. Diettrich B, Mertinat H, Luckner M, Breuel K, Dauth C (1987) Die Gewinnung von Klonlinien aus Digitalis-lanata-Hochleistungspflanzen durch Sproßspitzenkultur. Wiss Z Univ Halle 36M/ 5:90–102

    Google Scholar 

  16. Alfermann AW, Reinhard E (1980) Biotransformation by plant tissue cultures. In: Sala F, Parisi B, Cella R, Ciferri O (eds) Plant cell cultures: results and perspectives. Elsevier/North Holland Biomedical Press, Amsterdam, pp 399–404

    Google Scholar 

  17. Reinhard E, Alfermann AW (1980) Biotransformation by plant cell cultures. Adv Biochem Eng 16:49–83

    CAS  Google Scholar 

  18. Pfeiffer B, Roos W, Luckner M (1982) Accumulation of purpurea glycoside A in vacuoles of Digitalis lanata cells cultivated in vitro. Planta Med 45:154

    Article  PubMed  CAS  Google Scholar 

  19. Kreis W, Reinhard E (1987) Selective uptake and vacuolar storage of primary cardiac glycosides by suspension-cultured Digitalis lanata cells. J Plant Physiol 128:311–326

    CAS  Google Scholar 

  20. Diettrich B, Aster U, Greidziak N, Roos W, Luckner M (1987) Glucosylation of digitoxin and other cardenolides in cell cultures of Digitalis lanata. Biochem Physiol Pflanzen 182:245–255

    CAS  Google Scholar 

  21. Kreis W, Reinhard E (1985) Uptake, metabolism, and storage of cardenolides by Digitalis lanata cells. Pharm Z 130:2315–2316

    Google Scholar 

  22. Loeffelhardt W, Kopp B, Kubelka W (1979) Intracellular distribution of cardiac glycosides in leaves of Convallaria majalis. Phytochemistry 18:1289–1291

    Article  CAS  Google Scholar 

  23. Reinhard E, Boy M, Kaiser F (1975) Umwandlung von Digitalisglykosiden durch Zellsuspen-sionskulturen. Planta Med Suppl 163–168

    Google Scholar 

  24. Hagimori M, Matsumoto T, Obi Y (1982) Studies of the production of Digitalis cardenolides by plant tissue culture. II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Physiol 69:653–656

    Article  PubMed  CAS  Google Scholar 

  25. Hagimori M, Matsumoto T, Mikami Y (1984b) Photoautotrophic culture of undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. Plant Cell Physiol 25:1099–1102

    CAS  Google Scholar 

  26. Nover L, Luckner M, Tewes A, Garve R, Vogel E (1980) Cell specialization and cardiac glycoside formation in cell cultures of Digitalis species. Acta Hortic 96:65–74

    Google Scholar 

  27. Tewes A, Wappler A, Peschke E-M, Garve R, Nover L (1982) Morphogenesis and embryogenesis in long-term cultures of Digitalis. Z Pflanzenphysiol 106:311–324

    Google Scholar 

  28. Scheibner H, Diettrich B, Schulz U, Luckner M (1989b) Somatic embryos of Digitalis lanata. Synchronization of development and cardenolide biosynthesis. Biochem Physiol Pflanzen (in press)

    Google Scholar 

  29. Scheibner H, Bjoerk L, Schulz U, Diettrich B, Luckner M (1987) Influence of light on cardenolide accumulation in somatic embryos of Digitalis lanata. J Plant Physiol 130:211–219

    CAS  Google Scholar 

  30. Hering F, Lehmann T, Luckner M (1987) Glucodigifucosid und Odorobiosid G — Hauptglycoside von somatischen Embryonen und jungen in-vitro-Pflanzen von Digitalis lanata. Pharmazie 42:215–216

    Google Scholar 

  31. Beale JM, Floss HG, Lehmann T, Luckner M (1988) Glucodigifucoside (digitoxigenin-3b-O-[b-D-fucopyranosyl-4′-b-D-glucopyranoside]), the main cardenolide of somatic embryos of Digitalis lanata. Phytochemistry 27:3143–3146

    Article  CAS  Google Scholar 

  32. Scidel S, Reinhard E (1987) Major cardenolide glycosides in embryogénic suspension cultures of Digitalis lanata. Planta Med 53:308–309

    Article  Google Scholar 

  33. Ohlson AB, Bjoerk L, Gatenbeck S (1983) Effect of light on cardenolide production by Digitalis lanata tissue cultures. Phytochemistry 22:2447–2450

    Article  Google Scholar 

  34. Scheibner H, Bjoerk L, Schulz U, Neumann D, Diettrich B, Luckner M (1989a) The influence of inhibitors of chloroplast differentiation on chlorophyll and cardenolide accumulation in somatic embryos of Digitalis lanata. Biochem Physiol Pflanzen 184:63–67

    CAS  Google Scholar 

  35. Rhodes MJC, Robins RJ (1987) The use of plant cell cultures in studies of metabolism. In: Davies DD (ed) The biochemistry of plants, vol 13: Methodology. Academic Press, New York London, pp 65–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luckner, M., Diettrich, B. (1989). The Integration of Cardenolide Biosynthesis in the Differentiation Program “Somatic Embryogenesis” of Digitalis lanata . In: Kurz, W.G.W. (eds) Primary and Secondary Metabolism of Plant Cell Cultures II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74551-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74551-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74553-9

  • Online ISBN: 978-3-642-74551-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics