The Integration of Cardenolide Biosynthesis in the Differentiation Program “Somatic Embryogenesis” of Digitalis lanata

  • M. Luckner
  • B. Diettrich


The restriction to certain specialized cells, tissues, or organs, as well as to certain developmental stages is the most outstanding characteristic of secondary metabolism. In several experimental systems it was shown that this “phase dependence” is caused by the synthesis of the enzymes forming the secondary compounds shortly before or during the expression of the biosynthesis of secondary products. This demonstrated that secondary metabolism is the result of differential gene expression [1–3].


Somatic Embryo Somatic Embryogenesis Secondary Metabolism Plant Cell Culture Cardiac Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luckner M, Nover L, Boehm H (1977) Secondary metabolism and cell differentiation (Molecular biology, biochemistry and biophysics, vol 23). Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Luckner M (1980) Expression and control of secondary metabolism. In: Bell EA, Charlwood B (eds) Encyclopedia of plant physiology, New Ser, vol 8: Secondary plant products. Springer, Berlin Heidelberg New York, pp 23–63Google Scholar
  3. 3.
    Luckner M (1984) Secondary metabolism in microorganisms, plants, and animals. Fischer, Jena; Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    Luckner H, Diettrich B (1987) Biosynthesis of cardenolides in cell cultures of Digitalis lanata — the result of a new strategy. In: Green CE, Somers DA, Hackert WP, Biesboer DD (eds) Plant tissue and cell culture. Liss, New York, pp 187–197Google Scholar
  5. 5.
    Luckner M, Diettrich B (1985) Formation of cardenolides in cell and organ cultures of Digitalis lanata. In: Neumann K-H, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin Heidelberg New York Tokyo, pp. 154–163CrossRefGoogle Scholar
  6. 6.
    Luckner M, Diettrich B (1989) Cardenolides. In: Constabel F (ed) Cell culture and somatic cell genetics of plants, vol 5: Phytochemicals in plant cell cultures. Academic Press, New York London, pp 193–212Google Scholar
  7. 7.
    Weiler EW, Zenk MH (1976) Radioimmunoassay for the determination of digoxin and related compounds in Digitalis lanata. Phytochemistry 15:1537–1545CrossRefGoogle Scholar
  8. 8.
    Vogel E, Luckner M (1981) Distribution of cardenolides in Digitalis lanata. Planta Med 41:161–165PubMedCrossRefGoogle Scholar
  9. 9.
    Hagimori M, Matsumoto T, Mikami Y (1984a) Digitoxin biosynthesis in isolated mesophyll cells and cultured cells of Digitalis. Plant Cell Physiol 25:947–953Google Scholar
  10. 10.
    Diettrich B, Steup C, Neumann D, Scheibner H, Reinbothe C, Luckner M (1986) Morphogenetic capacity of cell strains derived from filament, leaf and root expiants of Digitalis lanata. J Plant Physiol 124:441–453Google Scholar
  11. 11.
    Rücker W, Jentzsch K, Wichtl M (1976) Wurzeldifferenzierung und Glykosidbildung bei in vitro kultivierten Blattexplantaten von Digitalis purpurea L. Z Pflanzenphysiol 80:323–335Google Scholar
  12. 12.
    Breuel K, Poetter H, Luckner M, Diettrich B, Springer M, Oertel C (1984) Verfahren zur virusfreien vegetativen Vermehrung und Erhaltung von Digitalis-Hochleistungspflanzen. GDR-Patent DD 207 731Google Scholar
  13. 13.
    Luckner M, Diettrich B, Springer M, Breuel K, Oertel C (1984) Verklonung von Digitalis-lanata-Hochleistungspflanzen durch Sproß Spitzenkultur. Int Vortragstag Methoden und Verfahren der Züchtung, des Anbaues, der Sammlung und der industriellen Verarbeitung von Arznei-und Gewürzpflanzen, Artern, 18. — 22. 6. 1984. Vortragstexte, Pt 1. Pharmazeutisches Werk, Halle, pp 113–127Google Scholar
  14. 14.
    Schöner S, Reinhard E (1986) Long-term cultivation of Digitalis lanata clones propagated in vitro: cardenolide content and the regeneration of plants. Planta Med 52:478–481CrossRefGoogle Scholar
  15. 15.
    Diettrich B, Mertinat H, Luckner M, Breuel K, Dauth C (1987) Die Gewinnung von Klonlinien aus Digitalis-lanata-Hochleistungspflanzen durch Sproßspitzenkultur. Wiss Z Univ Halle 36M/ 5:90–102Google Scholar
  16. 16.
    Alfermann AW, Reinhard E (1980) Biotransformation by plant tissue cultures. In: Sala F, Parisi B, Cella R, Ciferri O (eds) Plant cell cultures: results and perspectives. Elsevier/North Holland Biomedical Press, Amsterdam, pp 399–404Google Scholar
  17. 17.
    Reinhard E, Alfermann AW (1980) Biotransformation by plant cell cultures. Adv Biochem Eng 16:49–83Google Scholar
  18. 18.
    Pfeiffer B, Roos W, Luckner M (1982) Accumulation of purpurea glycoside A in vacuoles of Digitalis lanata cells cultivated in vitro. Planta Med 45:154PubMedCrossRefGoogle Scholar
  19. 19.
    Kreis W, Reinhard E (1987) Selective uptake and vacuolar storage of primary cardiac glycosides by suspension-cultured Digitalis lanata cells. J Plant Physiol 128:311–326Google Scholar
  20. 20.
    Diettrich B, Aster U, Greidziak N, Roos W, Luckner M (1987) Glucosylation of digitoxin and other cardenolides in cell cultures of Digitalis lanata. Biochem Physiol Pflanzen 182:245–255Google Scholar
  21. 21.
    Kreis W, Reinhard E (1985) Uptake, metabolism, and storage of cardenolides by Digitalis lanata cells. Pharm Z 130:2315–2316Google Scholar
  22. 22.
    Loeffelhardt W, Kopp B, Kubelka W (1979) Intracellular distribution of cardiac glycosides in leaves of Convallaria majalis. Phytochemistry 18:1289–1291CrossRefGoogle Scholar
  23. 23.
    Reinhard E, Boy M, Kaiser F (1975) Umwandlung von Digitalisglykosiden durch Zellsuspen-sionskulturen. Planta Med Suppl 163–168Google Scholar
  24. 24.
    Hagimori M, Matsumoto T, Obi Y (1982) Studies of the production of Digitalis cardenolides by plant tissue culture. II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Physiol 69:653–656PubMedCrossRefGoogle Scholar
  25. 25.
    Hagimori M, Matsumoto T, Mikami Y (1984b) Photoautotrophic culture of undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. Plant Cell Physiol 25:1099–1102Google Scholar
  26. 26.
    Nover L, Luckner M, Tewes A, Garve R, Vogel E (1980) Cell specialization and cardiac glycoside formation in cell cultures of Digitalis species. Acta Hortic 96:65–74Google Scholar
  27. 27.
    Tewes A, Wappler A, Peschke E-M, Garve R, Nover L (1982) Morphogenesis and embryogenesis in long-term cultures of Digitalis. Z Pflanzenphysiol 106:311–324Google Scholar
  28. 28.
    Scheibner H, Diettrich B, Schulz U, Luckner M (1989b) Somatic embryos of Digitalis lanata. Synchronization of development and cardenolide biosynthesis. Biochem Physiol Pflanzen (in press)Google Scholar
  29. 29.
    Scheibner H, Bjoerk L, Schulz U, Diettrich B, Luckner M (1987) Influence of light on cardenolide accumulation in somatic embryos of Digitalis lanata. J Plant Physiol 130:211–219Google Scholar
  30. 30.
    Hering F, Lehmann T, Luckner M (1987) Glucodigifucosid und Odorobiosid G — Hauptglycoside von somatischen Embryonen und jungen in-vitro-Pflanzen von Digitalis lanata. Pharmazie 42:215–216Google Scholar
  31. 31.
    Beale JM, Floss HG, Lehmann T, Luckner M (1988) Glucodigifucoside (digitoxigenin-3b-O-[b-D-fucopyranosyl-4′-b-D-glucopyranoside]), the main cardenolide of somatic embryos of Digitalis lanata. Phytochemistry 27:3143–3146CrossRefGoogle Scholar
  32. 32.
    Scidel S, Reinhard E (1987) Major cardenolide glycosides in embryogénic suspension cultures of Digitalis lanata. Planta Med 53:308–309CrossRefGoogle Scholar
  33. 33.
    Ohlson AB, Bjoerk L, Gatenbeck S (1983) Effect of light on cardenolide production by Digitalis lanata tissue cultures. Phytochemistry 22:2447–2450CrossRefGoogle Scholar
  34. 34.
    Scheibner H, Bjoerk L, Schulz U, Neumann D, Diettrich B, Luckner M (1989a) The influence of inhibitors of chloroplast differentiation on chlorophyll and cardenolide accumulation in somatic embryos of Digitalis lanata. Biochem Physiol Pflanzen 184:63–67Google Scholar
  35. 35.
    Rhodes MJC, Robins RJ (1987) The use of plant cell cultures in studies of metabolism. In: Davies DD (ed) The biochemistry of plants, vol 13: Methodology. Academic Press, New York London, pp 65–125Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • M. Luckner
  • B. Diettrich
    • 1
  1. 1.Section of PharmacyMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations