Effects of air pollutants on reproductive processes of poplar (Populus spp.) and Scots pine (Pinus sylvestris L.)

  • H. Venne
  • F. Scholz
  • A. Vornweg


Fumigation of female flowers before and/or after controlled pollinations of poplar clones (Populus spp.) showed detrimental effects of different atmospheric pollutants on reproductive processes in vivo. In particular, seed gain, germination capacity of seed and growth of seedlings were reduced by fumigating female flowers during anthesis and after pollination. Sulphur dioxide impaired the development of antheres, whereas ozone mainly displayed detrimental effects after pollination. But kind and extent of the effects not only depended on the respective pollutant, also the tested clones showed differences in sensitivity to toxic gases. Analogous clonal variation of sensitivity to SO2 and O3 was found in pollen germination and pollen tube growth in vitro of Scots pine (Pinus sylvestris L.). In particular, clonal differences in pollen tube growth give rise to the supposition that air pollution causes fertility selection in forest tree populations.


Pollen Tube Germination Percent Pollen Tube Growth Female Flower Pollen Germination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous (1986) Umweltbundesamt: Monatsberichte aus dem Meßnetz 3 /86, p 26Google Scholar
  2. Cox RM (1984) Sensitivity of forest plant reproduction to long range transported air pollutants: In vitro and in vivo sensitivity of Oenothera parviflora pollen to simulated acid rain. New Phytol 97: 63–70CrossRefGoogle Scholar
  3. Cox RM (1987) The response of plant reproductive processes to acidic rain and other air pollutants. In: Hutchinson TC, Meema KM (eds) Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems. Springer-Verlag, New York, Heidelberg, Berlin, p 155–170Google Scholar
  4. Döpp W (1931) Uber die Wirkung der schwefligen Säure auf Blütenorgane. Ber Deutsch Bot Ges 47: 173–221Google Scholar
  5. Dubay DT, Murdy WH (1983a) Direct adverse effects of SO2 on seed set in Geranium carolinianum L.: a consequence of reduced pollen germination on the stigma. Bot Gaz 144 (3): 376–381CrossRefGoogle Scholar
  6. Dubay DT, Murdy WH (1983b) The impact of sulphur dioxide on plant sexual reproduction: In vivo and in vitro effects compared. J Environ Qua! 12: 147–149Google Scholar
  7. Feder WA (1981) Bioassaying for ozone with pollen systems. Environ Health Perspect 37: 117–123PubMedCrossRefGoogle Scholar
  8. Franklin EC (1974) Pollination in slash pine: first come first served. In: Kraus J (ed) Seed yield from Southern pine seed orchards. Colloquium proceedings. Ga forest research council, p 15–20Google Scholar
  9. Geburek Th, Scholz F, Knabe W, Vornweg A (1987) Genetic studies by isozyme gene loci on tolerance and sensitivity in an air polluted Pinns sylvestris field trial. Silvae Genet 36: 49–53Google Scholar
  10. Harrison BH, Feder WA (1974) Ultra-structural changes in pollen exposed to ozone. Phytopathol 64: 257–258CrossRefGoogle Scholar
  11. Houston DB, Dochinger LS (1977) Effects of ambient air pollution on cone, seed and pollen characteristics in eastern white and red pines. Environ Pollut 12: 1–5CrossRefGoogle Scholar
  12. Karnosky DF, Stairs GR (1974) The effects of SO2 on in vitro forest tree pollen germination and tube elongation. J Environ Qual 3: 406–409CrossRefGoogle Scholar
  13. Lee TD, Hartgerink AP (1986) Pollination intensity, fruit maturation pattern, and offspring quality in Cassia fasciculata (Leguminosae). In: Mulcahy DL, Bergamini Mulcahy G, Ottaviano E (eds) Biotechnology and Ecology of Pollen. Springer-Verlag, New York, Berlin Heidelberg, Tokyo, p 417–422CrossRefGoogle Scholar
  14. Linskens HF, van Meegen Y, Pfahler PL, Wilcox M (1985) Sulfur dioxide effects on Petunia pollen germination and seed set. Bull Environ Contam Toxicol 34: 691–695PubMedCrossRefGoogle Scholar
  15. Mamajev SA, Shkarlet OD (1972) Effects of air and soil pollution by industrial waste on the fructification of Scots pine in the urals. Mitt forstl Bundesversuchsanstalt Wien 97 /11: 443–450Google Scholar
  16. Mejnartowicz L, Lewandowski A (1985) Effects of fluorides and sulphur dioxide on pollen germination and growth of the pollen tube. Acta Soc Bot Poloniae 54: 125–129Google Scholar
  17. Mrkva R (1969) Einfluss der Immissionen auf die Saatgüte der Kiefer (Pinns sylvestris L.) im Gebiet des Forstbetriebes Breclov (Südmähren). Acta Univ Agric Brno 38: 345–360Google Scholar
  18. Müller-Starck G (1985): Genetic differences between “tolerant” and “sensitive” beeches (Fagus sylvatica L.) in an environmentally stressed adult forest stand. Silvae Genet 34: 241–247Google Scholar
  19. Murdy WH (1979) Effects of SO2 on sexual reproduction in Lipidinm virginicum L. originating from regions with different SO2 concentrations. Bot Gaz 140: 299–303CrossRefGoogle Scholar
  20. Murdy WH, Ragsdale HL (1980) The influence of relative humidity on direct sulfur dioxide damage to plant sexual reproduction. J Environ Qual 9: 493–496CrossRefGoogle Scholar
  21. Namai H, Ohsawa R (1986) Variation of reproductive success rates of ovule and pollen deposited upon stigmas according to the different number of pollen on a stigma in angiosperms. In: Mulcahy DL, Bergamini Mulcahy G, Ottaviano E (eds) Biotechnology and Ecology of Pollen. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, p. 423–428CrossRefGoogle Scholar
  22. Pelz E (1963) Untersuchungen über die Fruktifikation rauchgeschädigter Fichtenbestände. Arch Forstwesen 12: 1066–1077Google Scholar
  23. Scholz F (1986) Luftverunreinigungen, ein Umweltfaktor, der Forstgenetik und Forstpflanzenzüchtung vor neue Aufgaben stellt. Allg Forstz 41: 1288–1294Google Scholar
  24. Scholz F, Bergmann F (1984) Selection pressure by air pollution as studied by isozyme-gene-systems in Norway spruce exposed to sulphur dioxide. Silvae Genet 33: 238–241Google Scholar
  25. Scholz F, Vornweg A, Stephan BR (1985) Wirkungen von Luftverunreinigungen auf die Pollenkeimung von Waldbäumen. Forstarch 56: 121–124Google Scholar
  26. Sidhu SS, Staniforth RJ (1986) Effects of atmospheric fluorides on foliage, and cone and seed production in balsam fir, black spruce, and larch. Can J Bot 64: 923–931CrossRefGoogle Scholar
  27. Snow AA (1986) Evidence for and against pollen tube competition in natural populations. In: Mulcahy DL, Bergamini Mulcahy G, Ottatiano E (eds) Biotechnology and Ecology of Pollen, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, p 405–410CrossRefGoogle Scholar
  28. Stanley RG, Linskens HF (1974) Pollen biology biochemistry management. Springer-Verlag, New York, Heidelberg, Berlin, p 49Google Scholar
  29. Stutz HP, Frehner E, Burkart A (1987) Nadelverlust der Fichte und Samenqualität. Forstw Centralbl 106: 68–77CrossRefGoogle Scholar
  30. Winkler P (1986) Phänomenologie der Ozonbildung und -Zerstörung in der unteren Troposphäre. In: Beirat Umweltforschung des Landes Baden-Württemberg (eds) Forum: Einfluß radioaktiver Stoffe auf das Schadstoffpotential der Atmosphäre und auf die Aktivitätsbelastung von Pflanzen, p 70–88Google Scholar
  31. Wolters JHB, Martens MJM (1987) Effects of air pollutants on pollen. Bot Rev 53 (3): 372–414CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • H. Venne
    • 1
  • F. Scholz
    • 1
  • A. Vornweg
    • 1
  1. 1.Federal Research Centre for Forestry and Forest ProductsInstitute of Forest Genetics and Forest Tree BreedingGroßhansdorfFed. Rep. Germany

Personalised recommendations