Advertisement

Hemmstoff und Wachstum: Growth Inhibitors, Not Auxin, Regulate Phototropism

  • J. Bruinsma
  • M. Sakoda
  • K. Hasegawa
Conference paper

Abstract

Sixty years ago, a famous botanical dissertation appeared in The Netherlands: ‘Wuchsstoff und Wachstum’, by Frits W. Went [18]. One of the classical experiments, described in this publication, was the unilateral illumination of an Avena sativa L. coleoptile tip, collecting the diffusates from the lighted and shaded sides in agar on either side of a flake of mica, and determining the auxin activities using the bioassay described in the paper (Fig. 1). From the auxin activity larger in the diffusate from the shaded side than from the lighted side, it was deduced that phototropic curvature results from differential flank growth caused by a lateral gradient in the cell-elongating substance. This auxin was later recognized as the ubiquitous IAA. The view was extended to gravitropism as the general Cholodny-Went theory of tropic curvature [19].

Keywords

Helianthus Annuus Auxin Activity Tropic Curvature Lateral Gradient Phototropic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaauw AH (1915) Z Bot 7:465Google Scholar
  2. 2.
    Bruinsma J, Karssen CM, Benschop M, van Dort JB (1975) J Exp Bot 26:411CrossRefGoogle Scholar
  3. 3.
    Bruinsma J, Franssen JM, Knegt E (1980) In: Skoog F (ed) Plant growth substances 1979. Springer. Berlin Heidelberg New York, p 444CrossRefGoogle Scholar
  4. 4.
    Bruinsma J, Hasegawa K (1989) Environ Exp Bot 29:25PubMedCrossRefGoogle Scholar
  5. 5.
    Franssen JM, Bruinsma J (1981) Planta 151:365CrossRefGoogle Scholar
  6. 6.
    Franssen JM, Firn RD, Digby J (1982) Planta 155:281CrossRefGoogle Scholar
  7. 7.
    Hasegawa K, Noguchi H, Iwagawa T, Hase T (1986) Plant Physiol 81:976PubMedCrossRefGoogle Scholar
  8. 8.
    Hasegawa K, Noguchi H, Tanone C, Sando S, Takada M. Sakoda M, Hashimoto T (1987) Plant Physiol 85:379PubMedCrossRefGoogle Scholar
  9. 9.
    Hasegawa K, Sakoda M (1988) Plant Cell Physiol 29:1159Google Scholar
  10. 10.
    Macleod K, Brewer F, Digby J, Firn RD (1984) J Exp Bot 35:1380CrossRefGoogle Scholar
  11. 11.
    Noguchi H, Nishitani K, Bruinsma J, Hasegawa K (1986) Plant Physiol 81:980PubMedCrossRefGoogle Scholar
  12. 12.
    Noguchi H, Hasegawa K (1987) Plant Physiol 83:672PubMedCrossRefGoogle Scholar
  13. 13.
    Pickard BG (1985) In: Pharis RP, Reid DS (eds) Encyclopedia of plant physiology, new series, vol 11. Springer, Berlin Heidelberg New York Tokyo, p 365Google Scholar
  14. 14.
    Shen-Miller J, Knegt E, Vermeer E, Bruinsma J (1982) Z Pflanzenphysiol 108:289Google Scholar
  15. 15.
    Thompson AG, Bruinsma J (1977) J Exp Bot 28:804CrossRefGoogle Scholar
  16. 16.
    Weiler EW (1984) Annu Rev Plant Physiol 35:85CrossRefGoogle Scholar
  17. 17.
    Weiler EW (1988) Physiol Plant (in press)Google Scholar
  18. 18.
    Went FW (1928) Recl Trav Bot Neerl 25:1Google Scholar
  19. 19.
    Went FW, Thimann KV (1937) Phytohormones. MacMillan, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. Bruinsma
    • 1
  • M. Sakoda
    • 2
  • K. Hasegawa
    • 2
  1. 1.Department Plant PhysiologyAgricultural UniversityWageningenThe Netherlands
  2. 2.Biological InstituteKagoshima UniversityKagoshimaJapan

Personalised recommendations