Indole-3-Ethanol Metabolism and Its Possible Role in the Regulation of Indole-3-Acetic Acid Biosynthesis

  • V. Magnus
  • G. Laćan


Indole-3-ethanol was discovered by Ehrlich [5] in 1912, as a metabolite of tryptophan added to yeast cultures, and given the trivial name tryptophol. The compound is also present in products of yeast fermentation, such as beer and wine [6] and, as one of the constituents determining flavor, has not ceased to attract the attention of brewers and enologists [e.g. 10]. As tryptophol contains the same C-N backbone as IAA, some common pathways of biogenesis and metabolism have long been anticipated. Details have, however, been slow to emerge. The older literature was reviewed earlier [e.g. 33, 38], and we will try to incorporate recent data into the classical concepts.


Physiol Plant Cucumber Seedling Yeast Fermentation Reserve Pool Auxin Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bower PJ, Brown HM, Purves WK (1976) Plant Physiol 57:855CrossRefGoogle Scholar
  2. 2.
    Bower PJ, Brown HM, Purves WK (1978) Plant Physiol 61:107PubMedCrossRefGoogle Scholar
  3. 3.
    Brown BH, Crozier A, Sandberg G, Jensen E (1986) Phytochemistry 25:299CrossRefGoogle Scholar
  4. 4.
    Brown HM, Purves WK (1976) J Biol Chem 251:907PubMedGoogle Scholar
  5. 5.
    Ehrlich F (1912) Ber Dtsch Chem Ges 45:883CrossRefGoogle Scholar
  6. 6.
    Ehrlich F (1917) Biochem Z 79:232Google Scholar
  7. 7.
    Ernstsen A, Sandberg G, Crozier A, Wheeler CT (1987) Planta 171:422CrossRefGoogle Scholar
  8. 8.
    Gamburg KZ, Rekoslavskaya NI (1985) Usp Sovrem Biol 100:44Google Scholar
  9. 9.
    Gibson RA, Schneider EA, Wightman F (1972) J Exp Bot 23:381CrossRefGoogle Scholar
  10. 10.
    Güntert M, Rapp A, Takeoka GR, Jennings W (1986) Z Lebensm Unters Forsch 182:200CrossRefGoogle Scholar
  11. 11.
    Jelaska S, Magnus V, Seretin M, Lacan G (1985) Physiol Plant 64:237CrossRefGoogle Scholar
  12. 12.
    Kemp DR (1978) In: Loutit MW, Miles JAR (eds) Microbial ecology. Springer, Berlin Heidelberg New York, p 341CrossRefGoogle Scholar
  13. 13.
    Lacan G, Lewer P, Magnus V, Iskrić S (1987) In: Schreiber K, Schütte HR, Sembdner G (eds) Proc Intern Symp Conjugated Plant Hormones. Structure, Metabolism and Function. 3–5 Nov 1986. VEB Deutscher Verlag der Wissenschaften, Berlin, East Germany, p 69Google Scholar
  14. 14.
    Lacan G, Magnus V, Šimaga Š, Iskrić S, Hall PJ (1985) Plant Physiol 78:447PubMedCrossRefGoogle Scholar
  15. 15.
    Larsen P (1950) Am J Bot 37:680Google Scholar
  16. 16.
    Larsen P, Harbo A, Klungsöyr S, Aasheim T (1962) Physiol Plant 15:552CrossRefGoogle Scholar
  17. 17.
    Lingappa BT, Prasad M, Lingappa Y, Hunt DF, Biemann K (1969) Science 163:192PubMedCrossRefGoogle Scholar
  18. 18.
    Magnus V (1975) Study of the metabolism of indolic compounds in higher plants (in Croatian). Thesis, University of ZagrebGoogle Scholar
  19. 19.
    Magnus V (1979) Carbohydr Res 76:261CrossRefGoogle Scholar
  20. 20.
    Magnus V, Iskrić S, Kveder S (1973) Planta 110:57CrossRefGoogle Scholar
  21. 20a.
    Magnus V, Laćan G, Iskrić S, Lewer P, Aplin RT, Thaller V (1989) Phytochemistry 28:2949CrossRefGoogle Scholar
  22. 21.
    Mino Y (1974) Agric Biol Chem 38:211CrossRefGoogle Scholar
  23. 22.
    Monteiro AM, Sandberg G, Crozier A (1987) Phytochemistry 26:327CrossRefGoogle Scholar
  24. 23.
    Narumiya S, Takai K, Tokuyama T, Noda Y, Ushiro H, Hayaishi O (1979) J Biol Chem 254:7007PubMedGoogle Scholar
  25. 24.
    Osawa T, Namiki M (1983) Tetrahedron Lett 24:4719CrossRefGoogle Scholar
  26. 25.
    Percival FW, Purves WK, Vickery LE (1973) Plant Physiol 51:739PubMedCrossRefGoogle Scholar
  27. 26.
    Rajagopal R (1967) Physiol Plant 20:982CrossRefGoogle Scholar
  28. 27.
    Rajagopal R (1968) Physiol Plant 21:1076CrossRefGoogle Scholar
  29. 28.
    Rayle DL, Purves WK (1967) Plant Physiol 42:520PubMedCrossRefGoogle Scholar
  30. 29.
    Rayle DL, Purves WK (1967) Plant Physiol 42:1091PubMedCrossRefGoogle Scholar
  31. 30.
    Sandberg G (1984) Planta 161:398CrossRefGoogle Scholar
  32. 31.
    Sandberg G, Ernstsen A (1987) Tree Physiol 3:185PubMedGoogle Scholar
  33. 32.
    Sandberg G, Ernstsen A, Hamnede M (1987) Physiol Plant 71:411CrossRefGoogle Scholar
  34. 33.
    Schneider EA, Wightman F (1978) In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohor-mones and related compounds — a comprehensive treatise, vol I. Elsevier. Amsterdam, p 29Google Scholar
  35. 34.
    Schneider EA, Wightman F (1986) Physiol Plant 68:396CrossRefGoogle Scholar
  36. 35.
    Schramm P, Rausch T, Hilgenberg W (1987) Physiol Plant 69:99CrossRefGoogle Scholar
  37. 36.
    Schramm P, Rausch T, Hilgenberg W (1987) Plant Physiol 84:541PubMedCrossRefGoogle Scholar
  38. 37.
    Schraudolf H, Weber H (1969) Planta 88:136CrossRefGoogle Scholar
  39. 38.
    Sembner G, Gross D, Liebisch H-W, Schneider G (1980) In: MacMillan J (ed) Encyclopedia of plant physiology, new series, vol 9. Springer, Berlin Heidelberg New York, p 281Google Scholar
  40. 39.
    Sherwin JE, Purves WK (1969) Plant Physiol 44:1303PubMedCrossRefGoogle Scholar
  41. 40.
    Sugawara F, Strobel GA (1987) Phytochemistry 26:1349CrossRefGoogle Scholar
  42. 41.
    Sussman MR, Goldsmith MHM (1981) Planta 150:15CrossRefGoogle Scholar
  43. 42.
    Vickery LE, Purves WK (1972) Plant Physiol 49:716PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • V. Magnus
  • G. Laćan
    • 1
  1. 1.Department of Organic Chemistry and BiochemistryInstitut Rudjer BoškovićZagrebYugoslavia

Personalised recommendations