Skip to main content

The Dioxygenases in Gibberellin Biosynthesis after Gibberellin A12-Aldehyde

  • Conference paper
Plant Growth Substances 1988

Abstract

The pathways and cofactor requirements for the conversion of GA12-aldehyde to C20- and C19-GAs in cell-free systems from different objects are now well known and the purification of the enzymes contained in these systems has begun. In this part of the pathway, the C-20 carbon atom is oxidized step by step and finally lost as CO2 to yield the γ-lactone typical for C19-GAs. The GA molecule may further become modified by hydroxylations, which profoundly influence its physiological activity. In general, 3β-hydroxylation increases the activity strongly — it may even be essential for activity — whereas 2β-hydroxylation inactivates the GA. The relative rates of C19-GA biosynthesis, 3β-hydroxylation and 2β-hydroxylation determine the amounts of physiologically active GA available to the plant, which explains the interest in the corresponding enzymes and their regulation. The GA biosynthesis pathways have recently been reviewed [4, 5, 9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BSA:

bovine serum albumin

DTE:

dithioerythritol

DTT:

dithiothreitol

EDTA:

ethylenediaminetetraacetic acid

GA(s):

gibberellins(s)

GAn :

gibberellin An

HPLC:

high performance liquid chromatography

References

  1. De Jong L, Kemp A (1984) Biochim Biophys Acta 787:105

    Article  PubMed  Google Scholar 

  2. Gilmour SJ, Zeevaart JAD, Schwenen L, Graebe JE (1986) Plant Physiol 82:190

    Article  PubMed  CAS  Google Scholar 

  3. Gilmour SJ, Bleecker AB, Zeevaart JAD (1987) Plant Physiol 85:87

    Article  PubMed  CAS  Google Scholar 

  4. Graebe JE (1985) In: Bopp M (ed) Plant growth substances 1985. Springer, Berlin Heidelberg New York Tokyo, p 74

    Google Scholar 

  5. Graebe JE (1987) Annu Rev Plant Physiol 38:419

    Article  CAS  Google Scholar 

  6. Graebe JE, Hedden P, Gaskin P, MacMillan J (1974) Phytochemistry 13:1433

    Article  CAS  Google Scholar 

  7. Günzler V, Majamaa K, Hanauske-Abel HM, Kivirikko KI (1986) Biochim Biophys Acta 873:38

    Article  Google Scholar 

  8. Hanauske-Abel HM, Günzler V (1982) J Theor Biol 94:421

    Article  PubMed  CAS  Google Scholar 

  9. Hedden P(1983) In: Crozier A (ed) The biochemistry and physiology of Gibberellins, vol 1. Praeger, New York, p 99

    Google Scholar 

  10. Hedden P, Graebe JE (1982) J Plant Growth Regul 1:105

    CAS  Google Scholar 

  11. Hoad GV, MacMillan J, Smith VA, Sponsel VM, Taylor DA (1982) In: Wareing PF (ed) Plant growth substances 1982. Academic Press, London, p 91

    Google Scholar 

  12. Kamiya Y, Graebe JE (1983) Phytochemistry 22:681

    Article  CAS  Google Scholar 

  13. Kwak SS, Kamiya Y, Sakurai A, Takahashi N, Graebe JE (1988) Plant Cell Physiol 29:235

    Google Scholar 

  14. Lange T (1986) Diplom-Thesis, Göttingen University, FRG

    Google Scholar 

  15. MacMillan J (1984) In: Menhenett R, Lawrence DK (eds) Biochemical aspects of synthetic and naturally occurring plant growth regulators. British Plant Growth Regulator Group. Wantage, p 13 (Monograph No 11)

    Google Scholar 

  16. Majamaa K, Günzler V, Hanauske-Abel HM, Myllylä R, Kivirikko KI (1986) J BiolChem261:7819

    PubMed  CAS  Google Scholar 

  17. Myllylä R, Majamaa K, Günzler V, Hanauske-Abel HM, Kivirikko KI (1984) J Biol Chem 259:5403

    PubMed  Google Scholar 

  18. Nietfeld JJ, Kemp A (1980) Biochim Biophys Acta 613:349

    PubMed  CAS  Google Scholar 

  19. Nietfeld JJ, Kemp A (1981) Biochim Biophys Acta 657:159

    PubMed  CAS  Google Scholar 

  20. Nietfeld JJ, De Jong L, Kemp A (1982) Biochim Biophys Acta 704:321

    Article  PubMed  CAS  Google Scholar 

  21. Smith VA, MacMillan J (1984) J Plant Growth Regul 2:251

    Article  CAS  Google Scholar 

  22. Smith VA, MacMillan J (1986) Planta (Berl) 167:9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graebe, J.E., Lange, T. (1990). The Dioxygenases in Gibberellin Biosynthesis after Gibberellin A12-Aldehyde. In: Pharis, R.P., Rood, S.B. (eds) Plant Growth Substances 1988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74545-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74545-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74547-8

  • Online ISBN: 978-3-642-74545-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics