Skip to main content

The Physiology of Bird Flight

  • Conference paper
Bird Migration

Abstract

Flight is the major means of transport in birds and the study of locomotion in these animals has an extra dimension compared with that in some other vertebrates, for many species of birds migrate twice a year over long distances, sometimes without stopping and sometimes at high altitude. Such efforts clearly impose large demands on the respiratory, cardiovascular and muscular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alerstam T (1979) Wind as selective agent in bird migration. Ornis Scand 10:76–93

    Article  Google Scholar 

  • Alerstam T (1981) The course and timing of bird migration. In: Aidley DJ (ed) Animal migration. Cambridge University Press, Cambridge, pp 10–54

    Google Scholar 

  • Aschoff J, Pohl H (1970) Der Ruheumsatz von Vögeln als Funktion der Tageszeit und der Körpergrösse. J Ornithol 111(1):38–47

    Article  Google Scholar 

  • Baudinette RV, Schmidt-Nielsen K (1974) Energy cost of gliding flight in herring gulls. Nature 248:83–84

    Article  Google Scholar 

  • Baudinette RV, Loveridge JP, Wilson KJ (1976) Heat loss from feet of herring gulls at rest and during flight. Am J Physiol 230:920–924

    PubMed  CAS  Google Scholar 

  • Berger M, Hart JS (1974) Physiology and energetics of flight. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 4. Academic Press, London, pp 415–477

    Google Scholar 

  • Berger M, Hart JS, Roy OZ (1970a) Respiration, oxygen consumption and heart rate in some birds during rest and flight. Z Vgl Physiol 66:201–214

    Article  Google Scholar 

  • Berger M, Roy OZ, Hart JS (1970b) The co-ordination between respiration and wing beats in birds. Z Vgl Physiol 66:190–200

    Article  Google Scholar 

  • Bernstein MH (1976) Ventilation and respiratory evaporation in the flying crow, Corvus ossifragus. Respir Physiol 26:371–382

    Article  PubMed  CAS  Google Scholar 

  • Bernstein MH, Schmidt-Nielsen K (1974) Ventilation and oxygen extraction in the crow. Respir Physiol 21:393–401

    Article  PubMed  CAS  Google Scholar 

  • Bernstein MH, Thomas SP, Schmidt-Nielsen K (1973) Power input during flight of the fish crow, Corvus ossifragus. J Exp Biol 58:401–410

    Google Scholar 

  • Bernstein MH, Curtis MB, Hudson DM (1979) Independence of brain and body temperatures in flying American kestrels, Falco sparverius. Am J Physiol 237:R58–R62

    PubMed  CAS  Google Scholar 

  • Bernstein MH, Duran HL, Pinshow B (1984) Extrapulmonary gas exchange enhances brain oxygen in pigeons. Science 226:564–566

    Article  PubMed  CAS  Google Scholar 

  • Biesel W, Nachtigall W (1987) Pigeon flight in a wind tunnel. IV. Thermoregulation and water homeostasis. J Comp Physiol B Biochem Syst Environ Physiol 157:117–128

    Article  Google Scholar 

  • Black CP, Tenney SM (1980) Oxygen transport during progressive hypoxia in high-altitude and sea-level water fowl. Respir Physiol 39:217–239

    Article  PubMed  CAS  Google Scholar 

  • Brackenbury JH, Gleeson M (1983) Effects of PCO2 on respiratory pattern during thermal and exercise hyperventilation in domestic fowl. Respir Physiol 54:109–119

    Article  PubMed  CAS  Google Scholar 

  • Butler PJ (1981) Respiration during flight. In: Hutas I, Debreczeni LA (eds) Advances in physiological sciences, vol 10. Pergamon, Oxford pp 155–164

    Google Scholar 

  • Butler PJ, Turner DJ (1988) Effect of training on maximal oxygen uptake and aerobic capacity of locomotory muscles in tufted ducks Aythya fuligula. J Physiol 401:347–359

    PubMed  CAS  Google Scholar 

  • Butler PJ, Woakes AJ (1980) Heart rate, respiratory frequency and wing beat frequency of free flying barnacle geese Branta leucopsis. J Exp Biol 85:213–226

    Google Scholar 

  • Butler PJ, Woakes AJ (1985) Exercise in normally ventilating and apnoeic birds. In: Gilles R (ed) Circulation, respiration and metabolism. Springer, Berlin Heidelberg New York, pp 40–45

    Google Scholar 

  • Butler PJ, West NH, Jones DR (1977) Respiratory and cardiovascular responses of the pigeon to sustained, level flight in a wind-tunnel. J Exp Biol 71:7–26

    Google Scholar 

  • Dial KP, Kaplan SR, Goslow GE Jr, Jenkins FA Jr (1987) Structure and neural control of the pectoralis in pigeons: Implications for flight mechanics. Anat Rec 218:284–287

    Article  PubMed  CAS  Google Scholar 

  • Dial KP, Kaplan SR, Goslow GE Jr (1988) A functional analysis of the primary upstroke and downstroke muscles in the domestic pigeon (Columba livia) during flight. J Exp Biol 134:1–16

    PubMed  CAS  Google Scholar 

  • Faraci FM, Fedde MR (1986) Regional circulatory responses to hypocapnia and hypercapnia in bar-headed geese. Am Physiol 250:R499–R504

    CAS  Google Scholar 

  • George JC, Berger AJ (1966) Avian myology. Academic Press, London

    Google Scholar 

  • George JC, John TM, Minhas KJ (1987) Seasonal degradative, reparative and regenerative ultra- structural changes in the breast muscle of the migratory Canada goose. Cytobios 52:109–126

    Google Scholar 

  • Greenewalt CH (1962) Dimensional relationships for flying animals. Smithson Misc Collect 144:1–46

    Google Scholar 

  • Greenewalt CH (1975) The significant dimensions, their departure from the requirements for dimensional similarity and the effect on flight aerodynamics of that departure. Trans Am Philos Soc 65:5–67

    Article  Google Scholar 

  • Grubb B (1983) Allometric relations of cardiovascular functions in birds. Am J Physiol 245:H567–H572

    PubMed  CAS  Google Scholar 

  • Grubb B, Mills CD, Colacino JM, Schmidt-Nielsen K (1977) Effect of arterial carbon dioxide on cerebral blood flow in ducks. Am J Physiol 232:H596–601

    PubMed  CAS  Google Scholar 

  • Grubb B, Colacino JM, Schmidt-Nielsen K (1978) Cerebral blood flow in birds: effect of hypoxia. Am J Physiol 234:H230–H234

    PubMed  CAS  Google Scholar 

  • Grubb B, Jones JH, Schmidt-Nielsen K (1979) Avian cerebral blood flow: influence of the Bohr effect on oxygen supply. Am J Physiol 236:H744–H749

    PubMed  CAS  Google Scholar 

  • Hails CJ (1978) A comparison of flight energetics in hirundines and other birds. Comp Biochem Physiol A Comp Physiol 63:581–585

    Article  Google Scholar 

  • Hart JS, Roy OZ (1966) Respiratory and cardiac responses to flight in pigeons. Physiol Zool 39:291–306

    Google Scholar 

  • Hirth K-D, Biesel W, Nachtigall W (1987) Pigeon flight in a wind tunnel III Regulation of body temperature. J Comp Physiol B Biochem Syst Environ Physiol 157:111–116

    Article  Google Scholar 

  • Hudson DM, Bernstein MH (1978) Respiratory ventilation during steady-state flight in white-necked raven, Corvus cryptoleucus. Fed Proc 37:472

    Google Scholar 

  • Hudson DM, Bernstein MH (1981) Temperature regulation and heat balance in flying white-necked ravens, Corvus cryptoleucus. J Exp Biol 90:267–281

    Google Scholar 

  • Hudson DM, Bernstein MH (1983) Gas exchange and energy cost of flight in the white-necked raven, Corvus cryptoleucus. J Exp Biol 103:121–130

    PubMed  CAS  Google Scholar 

  • John TM, George JC (1978) Circulating levels of thyroxine (T4) and triiodothyronine (T3) in the migratory Canada goose. Physiol Zool 51:361–370

    CAS  Google Scholar 

  • John TM, George JC, Scanes CG (1983) Seasonal changes in circulating levels of luteinizing hormone and growth hormone in the migratory Canada goose. Gen Comp Endocrinol 51:44–49

    Article  PubMed  CAS  Google Scholar 

  • Jürgens KD, Bartels H, Bartels R (1981) Blood oxygen transport and organ weights of small bats and small non-flying mammals. Respir Physiol 45:243–260

    Article  PubMed  Google Scholar 

  • Kampe G, Crawford EC (1973) Oscillatory mechanics of the respiratory system of pigeons. Respir Physiol 18:188–193

    Article  PubMed  CAS  Google Scholar 

  • Kiley JP, Kuhlmann WD, Fedde MR (1982) Ventilatory and blood gas adjustments in exercising isothermic ducks. J Comp Physiol 147:107–112

    CAS  Google Scholar 

  • Lasiewski RC, Calder WA Jr (1971) A preliminary allometric analysis of respiratory variables in resting birds. Respir Physiol 11:152–166

    Article  PubMed  CAS  Google Scholar 

  • LeFebvre EA (1964) The use of D2O18 for measuring energy metabolism in Columba livia at rest and in flight. Auk 81:403–416

    Google Scholar 

  • Lifson N, McClintock R (1966) Theory of use of the turnover rates of body water for measuring energy and material balance. J Theor Biol 12:46–74

    Article  PubMed  CAS  Google Scholar 

  • Lifson N, Gordon GB, Visscher MB, Nier AO (1949) The fate of utilised molecular oxygen and the source of the oxygen of respiratory carbon dioxide, studied with the aid of heavy oxygen. J Biol Chem 180:803–811

    PubMed  CAS  Google Scholar 

  • Linderoth LS Jr (1975) A wind tunnel for bird flight studies at high altitudes. J Appl Physiol 39:501–502

    PubMed  Google Scholar 

  • Lundgren BO, Kiessling K-H (1985) Seasonal variation in catabolic enzyme activities in breast muscle of some migratory birds. Oecologia (Berl) 66:468–471

    Article  Google Scholar 

  • Lundgren BO, Kiessling K-H (1986) Catabolic enzyme activities in the pectoralis muscle of premigratory and migratory juvenile reed warblers Acrocephalus scirpaceus (Herm). Oecologia (Berl) 68:529–532

    Article  Google Scholar 

  • Lundgren BO, Kiessling K-H (1988) Comparative aspects of fibre types, areas, and capillary supply in the pectoralis muscle of some passerine birds with differing migratory behaviour. J Comp Physiol B Biochem Syst Environ Physiol 158:165–173

    Article  Google Scholar 

  • Marey EJ (1980) Le vol des oiseaux. Masson, Paris

    Google Scholar 

  • Marsh RL (1981) Catabolic enzyme activities in relation to premigratory fattening and muscle hypertrophy in the gray catbird (Dumetella carolinensis). J Comp Physiol 141:417–423

    CAS  Google Scholar 

  • Marsh RL (1984) Adaptations of the gray catbird Dumetella carolinensis to long-distance migration: flight muscle hypertrophy associated with elevated body mass. Physiol Zool 57(1): 105–117

    Google Scholar 

  • Matsuda R, Bandman E, Strohman RC (1983) Regional differences in the expression of myosin light chains and tropomyosin subunits during development of chicken breast muscle. Dev Biol 95:484–491

    Article  PubMed  CAS  Google Scholar 

  • Midtgard U (1983) Scaling of the brain and the eye cooling system in birds: a morphometric analysis of the Rete Ophthalmicum. J Exp Zool 225:197–207

    Article  PubMed  CAS  Google Scholar 

  • Meier AH, Martin DD (1971) Temporal synergism of corticosterone and prolactin controlling fat storage in the white-throated sparrow, Zonotrichia albicollis. Gen Comp Endocrinol 17:311–318

    Article  PubMed  CAS  Google Scholar 

  • Nagy KA (1980) CO., production in animals: analysis of potential errors in the doubly labeled water method. Am J Physiol 238:R465–473

    Google Scholar 

  • Nisbet ICT, Drury WH Jr, Baird J (1963) Weight-loss during migration Part I: Deposition and consumption of fat by the blackpoll warbler Dendroica striata. Bird Banding 34:107–159

    Google Scholar 

  • Pages T, Planas J (1983) Muscle myoglobin and flying habits in birds. Comp Biochem Physiol A Comp Physiol 74:289–294

    Article  Google Scholar 

  • Parker GH, George JC (1975) Effects of short and long term exercise on intracellular glycogen and fat in pigeon pectoralis. Jpn J Physiol 25:175–184

    Article  PubMed  CAS  Google Scholar 

  • Pasquis P, Lacaisse A, Dejours P (1970) Maximal oxygen uptake in four species of small mammals. Respir Physiol 9:298–309

    Article  PubMed  CAS  Google Scholar 

  • Pennycuick CJ (1969) The mechanics of bird migration. Ibis 111:525–556

    Google Scholar 

  • Phillips JG, Butler PJ, Sharp PJ (1985) Physiological strategies in avian biology. Blackie, Glasgow

    Google Scholar 

  • Piersma T (1988) Breast muscle atrophy and constraints on foraging during the flightless period of wing moulting Great Crested Grebes. Ardea 76:96–106

    Google Scholar 

  • Pietschmann M, Bartels H, Fons R (1982) Capillary supply of heart and skeletal muscle of small bats and non-flying mammals. Respir Physiol 50:267–282

    Article  PubMed  CAS  Google Scholar 

  • Pinshow B, Bernstein MH, Arad Z (1985) Effects of temperature and \(P_{CO_2}\) on O2 affinity of pigeon blood: implications for brain O2 supply. Am J Physiol R758–R764

    Google Scholar 

  • Prinzinger R, Hanssler I (1980) Metabolism — weight relationship in some small nonpasserine birds. Experientia (Basel) 36:1299–1300

    Article  Google Scholar 

  • Raikow RJ (1985) Locomotor system. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic Press, London, pp 57–147

    Google Scholar 

  • Rayner JMV (1979) A new approach to animal flight mechanics. J Exp Biol 80:17–54

    Google Scholar 

  • Rollema HS, Bauer C (1979) The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. J Biol Chem 254:12038–12043

    PubMed  CAS  Google Scholar 

  • Rosser BWC, George JC (1984) Some histochemical properties of the fiber types in the pectoralis muscle of an emu (Dromaius novaehollandiae). Anat Rec 209:301–305

    Article  PubMed  CAS  Google Scholar 

  • Rosser BWC, George JC (1986a) Slow muscle fibres in the pectoralis of the turkey vulture (Cart hartes aura): an adaptation for soaring flight. Zool Anz 217:252–258

    Google Scholar 

  • Rosser BWC, George JC (1986b) The avian pectoralis: histochemical characterization and distribution of muscle fiber types. Can J Zool 64:1174–1185

    Article  Google Scholar 

  • Rothe H-J, Nachtigall W (1980) Physiological and energetic adaptations of flying birds, measured by the wind tunnel technique. A survey. In: Proceedings XVII International Ornithological Congress. Deutsche Ornithologen-Gessellschaft, Berlin, pp 400–405

    Google Scholar 

  • Rothe H-J, Biesel W. Nachtigall W (1987) Pigeon flight in a wind tunnel. II. Gas exchange and power requirements. J Comp Physiol B Biochem Syst Environ Physiol 157:99–109

    Article  Google Scholar 

  • Scheid P (1985) Significance of lung structure for performance at high altitude. In: Ilyichev VD, Gavrilov VM (eds) Acta XVIII Congressus Internationalis Ornithologici, vol 11. Nauka, Moscow, pp 976–977

    Google Scholar 

  • Schmidt-Nielsen K (1972) Locomotion: Energy cost of swimming, flying and running. Science 177:222–229

    Article  PubMed  CAS  Google Scholar 

  • Somero GN, Childress JJ (1980) A violation of the metabolism — size paradigm : activities of glycolytic enzymes in muscle increase in larger-size fish. Physiol Zool 53:322–337

    CAS  Google Scholar 

  • Stewart AG (1978) Swans flying at 8,000 metres. Br Birds 71:459–460

    Google Scholar 

  • Zusuki A (1978) Histochemistry of the chicken skeletal muscles. II. Distribution and diameter of three fiber types. Tohoku J Agric Res 29:38–43

    Google Scholar 

  • Swan LW (1961) The ecology of the High Himalayas. Sci Am 205:68–78

    Article  Google Scholar 

  • Talesara GL, Goldspink G (1978) A combined histochemical and biochemical study of my of ibrillar ATPase in pectoral, leg and cardiac muscle of several species of bird. Histochem J 10:695–710

    Article  PubMed  CAS  Google Scholar 

  • Tatner P, Bryant DM (1989) The doubly-labelled water technique for measuring energy expenditure. In: Bridges CR, Butler PJ (eds) Techniques in comparative respiratory physiology. An experimental approach. Cambridge University Press, Cambridge, pp 77–112

    Google Scholar 

  • Torre-Bueno JR (1976) Temperature regulation and heat dissipation during flight in birds. J Exp Biol 65:471–482

    PubMed  CAS  Google Scholar 

  • Torre-Bueno JR (1978a) Respiration during flight in birds. In: Piiper J (ed) Respiratory Function in Birds, Adult and Embryonic. Springer, Berlin Heidelberg New York, pp 89–94

    Google Scholar 

  • Torre-Bueno JR (1978b) Evaporative cooling and water balance during flight in birds. J Exp Biol 75:231–236

    PubMed  CAS  Google Scholar 

  • Torre-Bueno JR, Larochelle J (1978) The metabolic cost of flight in unrestrained birds. J Exp Biol 75:223–229

    PubMed  CAS  Google Scholar 

  • Tucker VA (1968) Respiratory exchange and evaporative water loss in the flying budgerigar. J Exp Biol 48:67–87

    Google Scholar 

  • Tucker VA (1970) Energetic cost of locomotion in animals. Comp Biochem Physiol 34:841–846

    Article  PubMed  CAS  Google Scholar 

  • Tucker VA (1972) Metabolism during flight in the laughing gull. Larus atricilla. Am J Physiol 222:237–245

    PubMed  CAS  Google Scholar 

  • Turner DL, Butler PJ (1988) The aerobic capacity of locomotory muscles in the tufted duck, Aythya fuligula. J Exp Biol 135:445–460

    PubMed  CAS  Google Scholar 

  • Utter JM, LeFebvre EA (1970) Energy expenditure for free flight by the purple martin (Progne subis). Comp Biochem Physiol 35:713–719

    Article  Google Scholar 

  • Weinstein GN, Anderson C, Steeves JD (1984) Functional characterization of limb muscles involved in locomotion in the Canada goose Branta canadensis. Can J Zool 62:1596–1604

    Article  Google Scholar 

  • West JB (1983) Maximal exercise at extreme altitudes on Mount Everest. J Appl Physiol 55:688–698

    PubMed  CAS  Google Scholar 

  • Winder WW (1979) Time course of the T3- and T4-induced increase in rat soleus muscle mitochondria. Am J Physiol 236:C132–C138

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Butler, P.J., Woakes, A.J. (1990). The Physiology of Bird Flight. In: Gwinner, E. (eds) Bird Migration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74542-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74542-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74544-7

  • Online ISBN: 978-3-642-74542-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics