Bird Migration pp 257-268 | Cite as

Circannual Rhythms in Bird Migration: Control of Temporal Patterns and Interactions with Photoperiod

  • E. Gwinner

Abstract

The idea that endogenous timing mechanisms may play an important role in the control of avian migrations is about as old as the insight that birds do indeed migrate. As early as 1702 Baron von Pernau (1702) suggested that migratory birds were “driven at the proper time by a hidden drive” (“durch einen verborgenen Zug zur rechten Zeit getrieben”), and similar propositions were made by other early investigators of migrations like Naumann (1822); Brehm (1828), and von Homeyer (1881). The participation of endogenous factors in the timing of migrations seemed especially likely in long-distance migrants that spend the winter close to the equator. These birds molt and start homeward migration at rather well-defined times in winter and early spring, in spite of the apparent absence of regular seasonal environmental changes. In view of this situation even Rowan (1926), who was so successful in explaining many aspects of avian annual cycles on the basis of photoperiodic effects, could not escape the conclusion that “those species that breed in the northern hemisphere and winter on the equator or cross it and winter in the southern hemisphere, make necessary the assumption that there is another and internal factor, a physiological rhythm”.

Keywords

Migration Europe Cage Willow Borin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25:11–28PubMedCrossRefGoogle Scholar
  2. Berthold P (1984) The endogenous control of bird migration : a survey of experimental evidence. Bird Study 31:19–27CrossRefGoogle Scholar
  3. Berthold P (1988) The control of migration in European warblers. Proc 19th Int Ornithol Congr Ottawa, pp 215–249Google Scholar
  4. Berthold P, Querner U (1988) Was Zugunruhe wirklich ist — eine quantitative Bestimmung mit Hilfe von Video-Aufnahmen bei Infrarotbeleuchtung. J Ornithol 129:372–375CrossRefGoogle Scholar
  5. Berthold P, Gwinner E, Klein H (1970) Vergleichende Untersuchung der Jugendentwicklung eines ausgeprägten Zugvogels, Sylvia borin, und eines weniger ausgeprägten Zugvogels, S. atricapilla. Vogelwarte 25:297–331Google Scholar
  6. Berthold P, Gwinner E, Klein H (1972) Circannuale Periodik bei Grasmücken. I. Periodik des Körpergewichts, der Mauser und der Nachtunruhe bei Sylvia atricapilla und S. borin unter verschiedenen konstanten Bedingungen. J Ornithol 113:170–190CrossRefGoogle Scholar
  7. Biebach H, Wegner H, Habersetzer J (1985) Measuring migratory restlessness in captive birds by an ultrasonic system. Experientia (Basel) 41:411–412CrossRefGoogle Scholar
  8. Brehm CL (1828) Der Zug der Vögel. Isis 21:912–922Google Scholar
  9. Czeschlik D (1974) A new method of recording migratory restlessness in caged birds. Experientia (Basel) 30:1490CrossRefGoogle Scholar
  10. Engels WL (1969) Photoperiodically induced testicular recrudescence in the transequatorial migrant Dolichonyx relative to natural photoperiods. Biol Bull 137:256–264CrossRefGoogle Scholar
  11. Gwinner E (1967) Circannuale Periodik der Mauser und der Zugunruhe bei einem Vogel. Naturwissenschaften 54:447PubMedCrossRefGoogle Scholar
  12. Gwinner E (1968) Circannuale Periodik als Grundlage des jahreszeitlichen Funktionswandels bei Zugvögeln. Untersuchungen am Fitis (Phylloscopus trochilus) und am Waldlaubsänger (Ph. sibilatrix). J Ornithol 109:70–95CrossRefGoogle Scholar
  13. Gwinner E (1977) Circannual rhythms in bird migration. Annu Rev Ecol Syst 8:381–405CrossRefGoogle Scholar
  14. Gwinner E (1981) Circannual systems. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 5. Plenum, New York, pp 391–410Google Scholar
  15. Gwinner E (1986a) Circannual rhythms. Zoophysiology 18. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. Gwinner E (1986b) Circannual rhythms in the control of avian migrations. Adv Study Behav 16:191–228CrossRefGoogle Scholar
  17. Gwinner E (1987a) Annual rhythms of gonadal size, migratory disposition and molt in garden warblers, Sylvia borin, exposed in winter to an equatorial or a southern hemisphere photoperiod. Ornis Scand 18:251–256CrossRefGoogle Scholar
  18. Gwinner E (1987b) Photoperiodic synchronization of circannual rhythms in gonadal activity, migratory restlessness, body weight, and molt in the garden warbler (Sylvia borin). In: Pévet P (ed) Comparative physiology of environmental adaptations, vol 3. Karger, Basel, pp 30–44Google Scholar
  19. Gwinner E (1988) Photoprefractoriness in equatorial migrants. Proc 19th Int Ornithol Congr Ottawa, pp 626–623Google Scholar
  20. Gwinner E (1989a) Einfluß der Photoperiode auf das circannuale System des Halsbandschnäppers (Ficedula albicollis) und des Trauerschnäppers (F. hypoleuca). J Ornithol 130:1–13CrossRefGoogle Scholar
  21. Gwinner E (1989b) Photoperiod as a modifying and limiting factor in the expression of avian circannual rhythms. J Biol Rhythms 4:237–250PubMedCrossRefGoogle Scholar
  22. Gwinner E, Wiltschko W (1978) Endogenously controlled changes in migratory direction of the garden warbler, Sylvia borin. J Comp Physiol 125:267–273CrossRefGoogle Scholar
  23. Gwinner E, Wiltschko W (1980) Circannual changes in migratory orientation of the garden warbler, Sylvia borin. Behav Ecol Sociobiol 7:73–78CrossRefGoogle Scholar
  24. Gwinner E, Berthold P, Klein H(1971) Untersuchungen zur Jahresperiodik von Laubsängern, II. Einfluß der Tageslichtdauer auf die Entwicklung des Gefieders, des Gewichtes und der Zugunruhe bei Phylloscopus trochilus und Ph. collybita. J Ornithol 112:253–265CrossRefGoogle Scholar
  25. Gwinner E, Dittami JP, Beldhuis JA (1988) The seasonal development of photoperiodic responsiveness in an equatorial migrant, the garden warbler Sylvia borin. J Comp Physiol A Sens Neural Behav Physiol 162:389–396CrossRefGoogle Scholar
  26. Homeyer EF von (1881) Die Wanderungen der Vögel. Grieben LeipzigGoogle Scholar
  27. Naumann J (1822) Naturgeschichte der Vögel Deutschlands. Fleischer, LeipzigGoogle Scholar
  28. Pengelley ET, Fisher KC (1963) The effect of temperature and photoperiod on the yearly hibernating behavior of captive golden-mantled ground squirrels (Citellus lateralis teseorum). Can J Zool 41:1103–1120CrossRefGoogle Scholar
  29. Pernau FA von (1702) Unterricht was mit dem lieblichen Geschöpff, denen Vögeln, auch ausser dem Fang, nur durch Ergründung deren Eigenschaften und Zahmmachung oder anderer Abrichtung man sich vor Lust und Zeitvertreib machen könne. NürnbergGoogle Scholar
  30. Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp Quant Biol 25:159–184PubMedGoogle Scholar
  31. Rowan W (1926) On photoperiodism, reproductive periodicity, and the annual migrations of birds and certain fishes. Proc Boston Soc Nat Hist 38:147–189Google Scholar
  32. Stresemann E (1934) Aves. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoology, Bd 7. Gruyter, Berlin LeipzigGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • E. Gwinner
    • 1
  1. 1.Max-Planck-Institut für VerhaltensphysiologieVogelwarteAndechsGermany

Personalised recommendations