Skip to main content

Topology of Peripheral Kinases: its Importance in Transmission of Mitochondrial Energy

  • Conference paper
Anion Carriers of Mitochondrial Membranes

Abstract

All transport systems for anionic mitochondrial metabolites reside in the inner mitochondrial membrane. Therefore, we are entirely accustomed to the idea that the outer membrane is freely permeable for these compounds. However, the permeability for polar metabolites through the outer membrane is restricted to a slightly anion-selective general diffusion pore protein (Colombini, 1979; Benz, 1985) which, at a voltage above 30 mV, adopts a different state, characterized by low conductance and cation selectivity (Ludwig et al., 1988). The latter state of the pore was found to exclude ADP and ATP permeation in intact mitochondria (Benz et al., 1988). Having accepted this fact we turned our curiosity on the question whether a membrane potential across the outer mitochondrial membrane can exist physiologically that results in regulation of anion permeability. The answer we arrived at was that the inner membrane potential might influence the outer membrane where it is in close contact with the inner membrane. The structure and function of these contact sites has been analyzed by electron microscopy in freeze fractured mitochondria. We observed a dynamic regulation of the contacts by the rate of the oxidative phosphorylation and a distance between the two membranes in the sites of 1-2 nm. The regulation of the pore lends support to the concept of a separate compartment of adenine nucleotides in the intermembrane space which would enhance the ATP translocation process because of the following reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benz R (1985) Porin from bacterial and mitochondrial outer membranes. CRC Crit Rev Biochem 19:145–190

    Article  PubMed  CAS  Google Scholar 

  • Benz R, Wojtczak L, Bosch W, Brdiczka D (1988) Inhibition of adenine nucleotide transport through the mitochondrial porin by a synthetic polyanion. FEBS Lett 210:75–80

    Article  Google Scholar 

  • Bessman SP, Carpenter CL (1985) The creatine creatine-phosphate energy shuttle. Ann Rev Biochem 54:831–865

    Article  PubMed  CAS  Google Scholar 

  • Brdiczka D, Pette D, Brunner G, Miller F. (1968) Kompartimentierte Verteilung von Enzymen in Rattenlebermitochondrien. Eur J Biocnem 5:294–304

    Article  CAS  Google Scholar 

  • Brdiczka D, Schumacher D (1976) Iodination of peripheral mitochondrial membrane proteins in correlation to the functional states of the ADP/ATP carrier. Biochem Biophys Res Commun 73:823–832

    Article  PubMed  CAS  Google Scholar 

  • Brdiczka D, Knoll G, Riesinger I, Weiler U, Klug G, Benz R, Krause J (1986) Microcompartmentation at the mitochondrial surface: its function in metabolic regulation. In: Brautbar N (ed) Myocardial and Skeletal Muscle Bioenergetics. Plenum, Press New York, pp 55–69

    Google Scholar 

  • Brooks SPJ, Suelter CH (1987) Compartmented coupling of chicken heart creatine kinase to the nucleotide translocase requires the outer membrane. Arch Biochem Biophys 257:144–153

    Article  PubMed  CAS  Google Scholar 

  • Colombini M (1979) A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279:643–645

    Article  PubMed  CAS  Google Scholar 

  • Erickson-Viitanen S, Viitanen P, Geiger PJ, Yang WC, Bessman SP (1982) Compartmentation of mitochondrial creatine phosphokinase. J Biol Chem 257:14395–14404

    PubMed  CAS  Google Scholar 

  • Fiek Ch, Benz R, Roos N, Brdiczka D (1982) Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane ofrat liver mitochondria. Biochim Biophys Acta 688:429–440

    Article  PubMed  CAS  Google Scholar 

  • Gellerich FN, Schlame M, Bohnensack R, Kunz W (1987) Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim Biophys Acta 890:117–126

    Article  PubMed  CAS  Google Scholar 

  • Gots RE, Bessman SP (1974) The functional compartmentation of mitochondrial hexokinase. Arch Biochem Biophys 163:7–14

    Article  PubMed  CAS  Google Scholar 

  • Hackenbrock CR (1968) Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proc Natl Acad Sci (USA) 61:598–605

    Article  CAS  Google Scholar 

  • Hackenbrock CR, Miller KJ (1975) The distribution of anionic sites on the surface of mitochondrial membranes. J Cell Biol 65:615–630

    Article  PubMed  CAS  Google Scholar 

  • Hebisch S, Sies H, Soboll S (1986) Function dependent changes in the subcellular distribution of high energy phosphates in fast and slow rat skeletal muscles. Pflügers Arch 406:20–24

    Article  PubMed  Google Scholar 

  • Inui M, Ishibashi S (1979) Functioning of mitochondria-bound hexokinase in rat brain in accordance with generation of ATP inside the organelle. J Biochem 85:1151–1156

    PubMed  CAS  Google Scholar 

  • Jacobs H, Held HW, Klingenberg M (1964) High activity of creatine kinase in mitochondria from muscle and brain. Evidence for a separate mitochondrial isozyme of creatine kinase. Biochem Biophys Res Commun 16:516–521

    Article  PubMed  CAS  Google Scholar 

  • Jacobus WE (1985) Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Ann Rev Physiol 47:707–725

    Article  CAS  Google Scholar 

  • Jacobus WE, Evans JJ (1977) Nucleoside diphosphokinase of rat heart mitochondria. Dual localization in matrix and intermembrane space. J Biol Chem 252:4232–4241

    PubMed  CAS  Google Scholar 

  • Klingenberg M, Held HW (1982) The ADP/ATP translocation in mitochondria and its role in intracellular compartmentation. In: Sies H (ed) Metabolic Compartmentation. Academic Press, New York, pp 101–122

    Google Scholar 

  • Knoll G, Brdiczka D. (1983) Changes in freeze-fracture mitochondrial membranes correlated to their energetic state. Biochim Biophys Acta 733:102–110

    Article  PubMed  CAS  Google Scholar 

  • Klug G, Krause J, Östlund AK, Knoll G, Brdiczka D (1984) Alteration in liver mitochondrial function as a result of fasting and exhaustive exercise. Biochim Biophys Acta 764:272–282

    Article  PubMed  CAS  Google Scholar 

  • Kottke M, Adams V, Riesinger I, Bremm G, Bosch W, Brdiczka D, Sandri G, Panfili E (1988) Mitochondrial boundary membrane contact sites in brain: Points of hexokinase and creatine kinase location and of control of Ca2+ transport. Biochim Biophys Acta 935:87–102

    Article  PubMed  CAS  Google Scholar 

  • Lindén M, Gellerfors P, Nelson BD (1982) Pore protein and hexokinase-binding protein from the outer membrane of rat liver mitochondria are identical. FEBS Lett 141:189–192

    Article  PubMed  Google Scholar 

  • Ludwig O, Benz R, Schultz IE (1988) Porin of paramecium mitochondria: Isolation, characterization and ion selectivity of the closed state. Eur J Biochem (submitted)

    Google Scholar 

  • Ohlendieck K, Riesinger I, Adams V, Krause J, Brdiczka D (1986) Enrichment and biochemical characterization of boundary membrane contact sites in rat-liver mitochondria. Biochim Biophys Acta 860:672–689

    Article  PubMed  CAS  Google Scholar 

  • Roos N, Benz R, Brdiczka D (1982) Identification and characterization of the poreforming protein in the outer membrane of rat liver mitochondria. Biochim Biophys Acta 686:204–214

    Article  PubMed  CAS  Google Scholar 

  • Saks VA, Rosenshtraukh LV, Smirnov N, Chazov El (1987) Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol 56:691–706

    Article  Google Scholar 

  • Soboll S, Scholz R, Heldt HW (1978) Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused liver. Eur J Biochem 87:377–390

    Article  PubMed  CAS  Google Scholar 

  • Tedeschi H, Mannella CA, Bowman CL (1987) Patch clamping of outer mitochondrial membrane. J Membrane Biol 97:21–29

    Article  CAS  Google Scholar 

  • Van Venetie R, Verkleij AJ (1982) Possible role of non-bilayer lipids in the structure of mitochondria. Biochim Biophys Acta 692:397–405

    Article  PubMed  Google Scholar 

  • Viitanen PV, Geiger PJ, Erickson-Viitanen S, Bessman SP (1984) Evidence for functional hexokinase compartmentation in rat skeletal muscle mitochondria. J Biol Chem 259:9679–9684

    PubMed  CAS  Google Scholar 

  • Wallimann Th, Eppenberger HM (1985) Localization and function of M-line bound creatine kinase. M-Band model and creatine phosphate shuttle. In: Shay IW (ed) Cell and Muscle Motility, Vol 6. Plenum Press, pp 239-285

    Google Scholar 

  • Weiler U, Riesinger I, Knoll G, Brdiczka D (1985) The regulation of mitochondrial-bound hexokinases in the liver. Biochem Medicine 33:223–235

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brdiczka, D., Adams, V., Kottke, M., Benz, R. (1989). Topology of Peripheral Kinases: its Importance in Transmission of Mitochondrial Energy. In: Azzi, A., Nałęz, K.A., Nałęcz, M.J., Wojtczak, L. (eds) Anion Carriers of Mitochondrial Membranes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74539-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74539-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74541-6

  • Online ISBN: 978-3-642-74539-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics