Skip to main content
  • 83 Accesses

Zusammenfassung

Es gibt Ökologen, die behaupten, man könne ökologische Vorgänge nur verstehen, wenn man sie aus der Sicht der Evolution betrachtet. Gegen diese extreme Position kann man vorbringen, daß man die Eigenschaften der Arten mit ihren gegenseitigen Wechselwirkungen einfach hinnehmen kann, ohne nach den Vorgängen der Evolution zu fragen, welche diese hervorgebracht haben, und stattdessen deren Wirkungsweisen untersuchen kann. Dies haben wir in den bisherigen Kapiteln (mit Ausnahme der Abschn. 3.1.2 und 3.1.3) so gehalten, und dies wird auch bei den meisten empirischen und theoretischen Untersuchungen getan. Dennoch ist es eine legitime Frage, warum eine Art diese oder jene Eigenschaften hat und welches die Faktoren der Selektion gewesen sein könnten, die diese bewirkt haben. Man mag zunächst an genetische Betrachtungsweisen mit Häufigkeiten für Gene und Genotypen denken. Auf dieser Ebene geht die Populationsgenetik (Wright 1969; Ewens 1970; Crow u. Kimura 1970; Sperlich 1973) diese Problematik an. Jedoch ist es in dieser Beschreibung schwierig, ökologische Faktoren, welche als Selektionsdruck die Richtung der natürlichen Auslese bestimmen, zu berückskchtigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

Theorie

  • Cody ML, Diamond JM (eds) (1975) Ecology and Evolution of communities. Harvard Univ. Press, Cambridge

    Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford Univ. Press. Oxford

    Google Scholar 

  • Emlen JM (1973) Ecology: An evolutionary approach. Addison-Wesley

    Google Scholar 

  • Ewens WJ (1979) Mathematical population genetics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Frankel OH, Soule ME (1981) Conservation and evolution. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Gould BJ, Lewontin RC (1979) The spandrels of San Marco and the panglossian paradigma: a critique of the adaptionist programme. Proc. Roy. Soc. Lond. 205 B: 581–598

    Google Scholar 

  • Hofbauer J, Sigmund K (1984) Evolutionstheorie und dynamische Systeme — Mathematische Aspekte der Selektion. Parey, Hamburg Berlin

    Google Scholar 

  • Krebs JR, Davies NB (eds) (1978) Behavioural ecology: An evolutionary approach. Blackwell, London

    Google Scholar 

  • Loeschke 1987

    Google Scholar 

  • Maynard Smith J (1972) On evolution. University Press, Edinburgh

    Google Scholar 

  • Maynard Smith J (1978) Optimization theory in evolution. Ann. Rev. Ecol. Syst. 9: 31–56

    Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Rosenzweig ML, Schaffer WM (1978) Homage to the Red Queen II: coevolutionary response to enrichment of exploitation ecosystem. Theor. Pop. Biol. 14: 158–163

    CAS  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton Univ. Press, Princeton

    Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. Chicago Univ. Press, Chicago

    Google Scholar 

Empirik

  • Emlen JM (1984) Population biology: the coevolution of population dynamics and behavior. Macmillan, New York

    Google Scholar 

  • Frankel OH, Soule ME (1981) Conservation and evolution. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Krebs JR, Davies NB (eds) (1978) Behavioural ecology: An evolutionary approach. Blackwell, London

    Google Scholar 

  • Krebs JR, Davies NB (1981) An introduction to behavioural ecology. Blackwell, London

    Google Scholar 

  • Pimentel D, Feinberg EH, Wood PW, Hayes JT (1965) Selection, spatial distribution and the coexistence of competing fly species. Amer. Nat. 99: 97–109

    Google Scholar 

  • Sperlich D (1973) Populationsgenetik. Fischer, Stuttgart

    Google Scholar 

  • Wilson DS (1980) The natural selection of populations and communities. Cummings, Amsterdam

    Google Scholar 

Theorie

  • Belovsky GE (1974) Herbivore optimal foraging: a comparative test of three models. Amer. Nat. 124: 97–115

    Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor. Pop. Biol. 9: 129–136

    CAS  Google Scholar 

  • Comins HN, Hassell MP (1979) The dynamics of optimally foraging predators and parasitoids. J. Anim. Ecol. 48: 335–351

    Google Scholar 

  • Cook RM, Cockrell BJ (1978) Predator ingestion rate and its bearing on feeding time and the theory of optimal diet. J. Anim. Ecol. 47: 529–548

    Google Scholar 

  • Cook RM, Hubbard SF (1977) Adaptive searching strategies in insect parasites. J. Anim. Ecol. 46: 115–125

    Google Scholar 

  • Engen S, Stenseth NC (1984) A general version of optimal foraging theory: The effect of simultaneous encounters. Theor. Pop. Biol. 26: 192–204

    Google Scholar 

  • Gould BJ, Lewontin RC (1979) The spandrels of San Marco and the panglossian paradigma: a critique of the adaptionist programme. Proc. Roy. Soc. Lond. 205 B: 581–598

    Google Scholar 

  • Gross LJ (1986a) An overview of foraging theory. In: Hallam TG, Levin SA (eds). Mathematical ecology. An introduction. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Hassell MP (1980) Foraging strategies, population models and biological control: a case study. J. Anim. Ecol. 49: 603–628

    Google Scholar 

  • Krebs JR (1978) Optimal foraging: Decision rules for predators. In: Krebs JR, Davis NB (eds) Behavioural ecology: An evolutionary approach. Blackwell, Oxford

    Google Scholar 

  • Krebs JR, Davies NB (eds) (1978) Behavioural ecology: An evolutionary approach. Blackwell, London

    Google Scholar 

  • Krebs JR, Davies NB (1981) An introduction to behavioural ecology. Blackwell, London

    Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Amer. Nat. 100: 603–609

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology. New York, Harper and Row

    Google Scholar 

  • Maynard Smith J (1974) Models in ecology. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • McNair JM (1980) A stochastic foraging model with predator training effects: I. Funtional response, switching and run lengths. Theor. Pop. Biol. 17: 141–166

    Google Scholar 

  • Oaten A (1977) Optimal foraging in patches: a case for stochasticity. Theor. Pop. Biol. 12: 263ff.

    CAS  Google Scholar 

  • Pianka ER (1974a) Evolutionary ecology. Harper and Row, London

    Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Quart. Rev. Biol. 52: 137–154

    Google Scholar 

  • Rapport DJ (1971) An optimization model of food selection. Amer. Nat. 105: 575–587

    Google Scholar 

  • Royama T (1970b) Evolutionary significance of predators response to local differences in prey density: A theoretical study. Proc. Adv. Study Inst. Dynamics Numbers Popul. (Oosterbeek)

    Google Scholar 

  • Royama T (1971) A comparative study of models for prédation and parasitism. Res. Pop. Ecol. Suppl. 1: 1–91

    Google Scholar 

  • Schoener TW (1969a) Models of optimal size for solitary predators. Amer. Nat. 103: 277–313

    Google Scholar 

  • Schoener TW (1969b) Optimal size and specialization in constant and fluctuating environments: An energy-time approach. Brookhaven Symp. Biol. 22: 103–114

    PubMed  CAS  Google Scholar 

  • Schoener TW (1971) On the theory of feeding strategies. Ann. Rev. Ecol. Syst. 2: 369–404

    Google Scholar 

  • Schoener TW (1983a) Simple models of optimal feeding-territory size: a reconciliation. Amer. Nat. 121: 608–629

    Google Scholar 

  • Sibly RM, Calow P (1986) Physiological ecology of animals. Blackwell Sci. Publ., London

    Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton Univ. Press, Princeton

    Google Scholar 

  • Stenseth NC, Hansson L (1979) Optimal food selection: a graphical model. Amer. Nat. 113: 373–389

    Google Scholar 

Empirik

  • Belovsky GE (1974) Herbivore optimal foraging: a comparative test of three models. Amer. Nat. 124: 97–115

    Google Scholar 

  • Cook RM, Cockrell BJ (1978) Predator ingestion rate and its bearing on feeding time and the theory of optimal diet. J. Anim. Ecol. 47: 529–548

    Google Scholar 

  • Cook RM, Hubbard SF (1977) Adaptive searching strategies in insect parasites. J. Anim. Ecol. 46: 115–125

    Google Scholar 

  • Cowie RJ (1977) Optimal foraging in great tits (Parus major). Nature 268: 137–139

    Google Scholar 

  • Davidson DW (1977b) Foraging ecology and community organization in desert seed-eating ants. Ecology 58: 725–737

    Google Scholar 

  • Davis NB (1977) Prey selection and the search strategy of the spotted fly-catcher (Muscicapa striata), a field study on optimal foraging. Anim. Behav. 25: 1016–1033

    Google Scholar 

  • De Benedictis PA, Bill FB, Haidworth FR, Pyke BF, Wolf LL (1978) Optimal meal size in hummingbirds. Amer. Nat. 112: 301–316

    Google Scholar 

  • Erichsen JT, Krebs JR, Houston AI (1980) Optimal foraging and cryptic prey. J. Anim. Ecol. 49: 271–276

    Google Scholar 

  • Hassell MP (1980) Foraging strategies, population models and biological control: a case study. J. Anim. Ecol. 49: 603–628

    Google Scholar 

  • Huey RB, Pianka ER (1981) Ecological consequences of foraging mode. Ecology 62: 991–999

    Google Scholar 

  • Kamil AC, Sargent TD (1981) Foraging behavior: Ecological, ethological and psychological approaches. Garland, New York

    Google Scholar 

  • Krebs JR (1978) Optimal foraging: Decision rules for predators. In: Krebs JR, Davis NB (eds) Behavioural ecology: An evolutionary approach. Blackwell, Oxford

    Google Scholar 

  • Krebs JR, Cowie RJ (1976) Foraging strategies in birds. Ardea 64: 98–116

    Google Scholar 

  • Krebs JR, Davies NB (eds) (1978) Behavioural ecology: An evolutionary approach. Blackwell, London

    Google Scholar 

  • Krebs JR, Davies NB (1981) An introduction to behavioural ecology. Blackwell, London

    Google Scholar 

  • Krebs JR, Erichsen JT, Webber MI, Charnov EL (1977) Optimal prey selection in the great tit (Parus major). Anim. Behav. 25: 30–38

    Google Scholar 

  • Lawton JH (1973) The energy cost of food-gathering. In: Benjamin B, Cox PR, Peel J (eds). Resources and populations

    Google Scholar 

  • Pianka ER (1974a) Evolutionary ecology. Harper and Row, London

    Google Scholar 

  • Putman RJ, Wratten SD (1984) Principles of ecology. Croom Helm, London

    Google Scholar 

  • Pyke GH (1979) The economics of territory size and time budget in the golden-winged sunbird. Amer. Nat. 114: 131–145

    Google Scholar 

  • Pyke G (1981) Honeyeater foraging: A test of optimal foraging theory. Anim. Behav. 29: 878–888

    Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Quart. Rev. Biol. 52: 137–154

    Google Scholar 

  • Smith JNM, Sweatman HPA (1974) Food searching behaviour of titmice in patchy environments. Ecology 55: 1216–1232

    Google Scholar 

  • Werner EE, Hall DJ (1974) Optimal foraging and the size selection of prey by the bluegill sunfish. Ecology 55: 1042–1052

    Google Scholar 

  • Wolf LL (1975) Foraging efficiencies and the time budgets in nectar feeding birds. Ecology 65: 117–128

    Google Scholar 

Theorie

  • Clark CW, Mangel M (1984) Foraging and flocking strategies: information in an uncertain environment. Amer. Nat. 123: 626–641

    Google Scholar 

  • Clutton Brock TH, Harvey PH (1978) Cooperation and disruption. In: (Clutton Brock TH, Harvey PH (eds)). Readings in sociobiology. W. H. Freeman

    Google Scholar 

  • Gosling LM, Petrie M (1981) Economics of social organization. In: Townsend ER, Calow P (eds). Physiological ecology: an evolutionary approach to resource use. Blackwell, Oxford

    Google Scholar 

  • Lovegrove BG, Wissel C (1988) Sociality in molerats: Metabolic scaling and the role of risk sensitivity. Oecologia 74: 600–606

    Google Scholar 

  • Macevicz S, Oster C (1976) Modelling social insect populations. Behav. Ecol. Sociobiol. 1: 265ff.

    Google Scholar 

  • McNair JM (1980) A stochastic foraging model with predator training effects: I. Funtional response, switching and run lengths. Theor. Pop. Biol. 17: 141–166

    Google Scholar 

  • Pulliam HR, Caraco T (1984) Living in groups: is there an optimal group size. In: Krebs JR, Davies NB (eds) An introduction to behavioural ecology. Sinauer, Sunderland MA

    Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Quart. Rev. Biol. 52: 137–154

    Google Scholar 

  • Schoener TW (1969b) Optimal size and specialization in constant and fluctuating environments: An energy-time approach. Brookhaven Symp. Biol. 22: 103–114

    PubMed  CAS  Google Scholar 

  • Stephens DW (1981) The logic of risk-sensitive foraging preferences. Anim. Behav. 29: 628–629

    Google Scholar 

  • Stephens DW, Charnov EL (1982) Optimal foraging: some simple stochastic models. Behav. Ecol. Sociobiol. 10: 251–263

    Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton Univ. Press, Princeton

    Google Scholar 

  • Townsend CR, Hughes RN (1981) Maximizing net energy returns from foraging. In: Townsend CR, Calow P (eds) Physiological ecology: an evolutionary approach to resource use. Blackwell, Oxford

    Google Scholar 

Empirik

  • Clutton Brock TH, Harvey PH (1978) Cooperation and disruption. In: (Clutton Brock TH, Harvey PH (eds)). Readings in sociobiology. W. H. Freeman

    Google Scholar 

  • Crook JH, Gartlan JS (1966) Evolution of primate societies. Nature 210: 1200–1203

    PubMed  CAS  Google Scholar 

  • Davidson DW (1977b) Foraging ecology and community organization in desert seed-eating ants. Ecology 58: 725–737

    Google Scholar 

  • Horn HS (1968a) The adaptive significance of colonial nesting in the Brewer’s blackbird Euphagus cyanocephalus. Ecology 49: 682–694

    Google Scholar 

  • Jarman PJ (1974) The social organisation of antelopes in relation to their ecology. Behaviour 48: 215–266

    Google Scholar 

  • Lawick-Goodall, H. van, Lawick-Goodall, J. van (1970) Innocent Killers. Collins, London

    Google Scholar 

  • Lloyd M, Dybas HS (1966) The periodical cicada problem. I. Population ecology. II. Evolution. Evolution 20: 133–149, 466–505

    Google Scholar 

  • Lovegrove BG, Wissel C (1988) Sociality in molerats: Metabolic scaling and the role of risk sensitivity. Oecologia 74: 600–606

    Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Quart. Rev. Biol. 52: 137–154

    Google Scholar 

  • Townsend CR, Hughes RN (1981) Maximizing net energy returns from foraging. In: Townsend CR, Calow P (eds) Physiological ecology: an evolutionary approach to resource use. Blackwell, Oxford

    Google Scholar 

Theorie

  • Austin CR, Short RV (1984) Reproduction in mammals 4: reproductive fitness. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Charlesworth B (1980) Evolution in agestructured populations. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Christiansen FB, Fenchel TM (1977) Theories of populations in biological communities. (Ecological Studies 20). Springer Berlin Heidelberg New York

    Google Scholar 

  • Cohen D (1966) Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12: 110–129

    Google Scholar 

  • Gadgil M, Solbrig OT (1972) The concept of r- and k-selection: evidence from wild flowers and some theoretical considerations. Amer. Nat. 106: 14–31

    Google Scholar 

  • Gould BJ, Lewontin RC (1979) The spandrels of San Marco and the panglossian paradigma: a critique of the adaptionist programme. Proc. Roy. Soc. Lond. 205 B: 581–598

    Google Scholar 

  • MacArthur 1962

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology. New York, Harper and Row

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton Univ. Press, Princeton

    Google Scholar 

  • Maynard Smith J (1977) Parental investment: a prospective analysis. Anim. Behav: 25, 1–9

    Google Scholar 

  • Maynard Smith J (1978) Optimization theory in evolution. Ann. Rev. Ecol. Syst. 9: 31–56

    Google Scholar 

  • Pianka ER (1972) r and K selection or b and d selection. Amer. Nat. 106: 581–588

    Google Scholar 

  • Pianka ER (1974a) Evolutionary ecology. Harper and Row, London

    Google Scholar 

  • Price PW, Slobodchikoff CN, Gaud WS (1984) A new ecology: Novel approaches to interactive systems. Wiley, New York

    Google Scholar 

  • Schaffer 1984

    Google Scholar 

  • Sibly RM, Calow P (1986) Physiological ecology of animals. Blackwell Sci. Publ., London

    Google Scholar 

  • Smith CC, Fretwell SD (1974) The optimal balance between size and offspring. Amer. Nat. 108: 499–506

    Google Scholar 

  • Southwood TRE (1976) Bionomic strategies and population parameters. In: May RM (ed) Theoretical ecology: Principles and applications. Blackwell, Oxford

    Google Scholar 

  • Stearns SC (1976) Life-history tactics: a review of the ideas. Quart. Rev. Biol. 51: 3–46

    CAS  Google Scholar 

  • Wissel C (1977) On the advantage of the specialization of flowers on particular pollinator species. J. Theor. Biol. 69: 11–22

    PubMed  CAS  Google Scholar 

Empirik

  • Abrahamson WG, Gadgil M (1973) Growth form and reproductive effort in goldenrods (Solidago: Compositae). Amer. Nat. 107: 651–661

    Google Scholar 

  • Charlesworth B (1980) Evolution in agestructured populations. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Dawkins R, Carlisle TR (1976) Parental investment and mate-desertion, a fallacy. Nature 262: 131–133

    Google Scholar 

  • Forsyth AB, Robertson RJ (1975) K-reproductive strategy and larval behaviour of the pitcher plant sarcophagic fly, Blaesoxipha fletcher. Can. J. Zool. 53: 174–179

    Google Scholar 

  • Gadgil M, Solbrig OT (1972) The concept of r- and k-selection: evidence from wild flowers and some theoretical considerations. Amer. Nat. 106: 14–31

    Google Scholar 

  • Heron AC (1972) Population ecology of colonizing species: the pelagic tunicate thalis democratica. Oecologia 10: 269–312

    Google Scholar 

  • Lack D (1947) The significance of clutch size. Ibis 87: 302–352

    Google Scholar 

  • Lack D (1968) Ecological adaptations for breeding in birds. Methuen, London

    Google Scholar 

  • McNaughton SJ (1975) r- and K-selection in Typha. Amer. Nat. 109: 251–261

    Google Scholar 

  • Putman RJ (1977) Dynamics of the blowfly, Calliphora erythrocephala within carrion. J. Anim. Ecol. 46: 853–866

    Google Scholar 

  • Putman RJ, Wratten SD (1984) Principles of ecology. Croom Helm, London

    Google Scholar 

  • Solbrig PT, Simpson BB (1974) Components of regulation of a population of dandelions in Michigan. J. Ecol. 62: 473–486

    Google Scholar 

  • Southwood TRE (1976) Bionomic strategies and population parameters. In: May RM (ed) Theoretical ecology: Principles and applications. Blackwell, Oxford

    Google Scholar 

Theorie

  • Bulmer MG (1984) Delayed germination of seeds: Cohen’s model revisited. Theor. Pop. Biol. 26: 367–377

    Google Scholar 

  • Hofbauer J, Sigmund K (1984) Evolutionstheorie und dynamische Systeme — Mathematische Aspekte der Selektion. Parey, Hamburg Berlin

    Google Scholar 

  • Maynard Smith J (1972) On evolution. University Press, Edinburgh

    Google Scholar 

  • Maynard Smith J (1976) Evolution and the theory of games. Amer. Sci. 64: 41–45

    Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Reed J, Stenseth NC (1984) On evolutionarity stable strategies. J. Theor. Biol. 108: 491–508

    Google Scholar 

  • Thomas B (1984) Evolutionary stability: States and strategies. Theor. Pop. Biol. 26: 49–67

    Google Scholar 

Empirik

  • Putman RJ, Wratten SD (1984) Principles of ecology. Croom Helm, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wissel, C. (1989). Anpassung. In: Theoretische Ökologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74535-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74535-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50848-9

  • Online ISBN: 978-3-642-74535-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics