Skip to main content

Zeitliche Variabilität der Umwelt

  • Chapter
  • 84 Accesses

Zusammenfassung

In unseren bisherigen Modellen sind wir meistens davon ausgegangen, daß die Umweltbedingungen, die auf die Populationen wirken, zeitlich konstant sind. Dies steht im krassen Gegensatz zu den wirklichen Verhältnissen. Viele abiotische Umweltparameter, wie z. B. Temperatur, Licht, Niederschlag, zeigen eine Tagesund Jahresperiodik. Dazu kommen die wetterbedingten Fluktuationen. Zu den biotischen Umweltfaktoren zählen alle Organismen, die wir nicht explizit in unseren dynamischen Gleichungen berücksichtigen. Ihre zeitliche Veränderlichkeit bedingt zum Teil stark schwankende Einflüsse auf die betrachtete Populationsdynamik. Bedenken wir, daß unsere Modelle die Populationen in ihrer abiotischen und biotischen Umwelt beschreiben sollen, so müssen wir für sie zeitlich variierende Wachstumsbedingungen annehmen. Also werden die Wachstumsraten f(N), d. h. die Parameter dieser Funktionen zeitlich schwanken. In Abschn. 2.2.4 hatten wir bereits die Wirkung zufälliger Umwelteinflüsse abgeschätzt. In diesem Kapitel wollen wir auf die gesamte Problematik zeitlich variierender Bedingungen ausführlich eingehen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

Theorie

  • Goebber F, Seelig FF (1975) Conditions for the application of the steady-state approximation to systems of differential equations. J. Math. Biol. 2: 79–86

    Article  Google Scholar 

  • Hallam TG (1986a) Population dynamics in a homogeneous environment. In: Hallam TG, Levin SA (eds). Mathematical ecology. An introduction. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Kiester AR, Barakat R (1974) Exact solutions to certain stochastic differential equation models of population growth. Theor. Pop. Biol. 6: 199–216

    Article  CAS  Google Scholar 

  • Lewandowsky M, White BS (1977) Randomness, time scales, and the evolution of biological communities. Evol. Biol. 10: 69–161

    Google Scholar 

  • May RM (1976a) Models of single populations. In: Theoretical ecology (May RM (ed)). Black well, Oxford

    Google Scholar 

  • Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, Chichester

    Google Scholar 

  • Roughgarden J (1975) A simple model for population dynamics in stochastic environments. Amer. Nat. 109: 713–736

    Article  Google Scholar 

  • Starfield AM, Bleloch AL (1983) Expert system: an approach to problems in ecological management that are difficult to quantify. J. Environ. Manag. 16: 261–268

    Google Scholar 

Empirik

  • Dayton FK (1975b) Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol. Monogr. 45: 147–159

    Article  Google Scholar 

  • Luckinbill LS, Fento M (1978) Regulation and environmental variability in experimental populations of Protozoa. Ecology 59: 1271–1276

    Article  Google Scholar 

Theorie

  • Armstrong RA, McGeheee R (1980) Competitive exclusion. Amer. Nat. 115: 151–170

    Article  Google Scholar 

  • Huston M (1979) A general hypothesis of species diversity. Amer. Nat. 113: 81–101

    Article  Google Scholar 

  • Kaplan JL, Yorke JA (1975) Competitive exclusion and nonequilibrium coexistence. Amer. Nat. 111: 1030–1036

    Article  Google Scholar 

Empirik

  • Khan MA, Putwain PD, Bradshaw AD (1975) Population interrelationships. 2. Frequency dependent fitness in Linum. Heredity 34: 145–163

    Article  Google Scholar 

Theorie

Empirik

  • Hutchinson GE (1961) The paradox of the plankton. Amer. Nat. 95: 137–145

    Article  Google Scholar 

  • Sommer U (1985a) Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton. Limn. Ocean. 30: 335–346

    Article  CAS  Google Scholar 

  • Sommer U (1985b) Phytoplankton natural community competition experiments: A reinterpretation. Limn. Ocean. 30: 436–440

    Article  CAS  Google Scholar 

  • Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Ann. Rev. Ecol. Sys. 13: 349–372

    Article  Google Scholar 

Theorie

  • Bronstein I, Semendjajew K (1981) Taschenbuch der Mathematik. Harri Deutsch, Frankfurt

    Google Scholar 

  • Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  • Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, Chichester

    Google Scholar 

Theorie

  • Chesson P (1978) Predator-prey theory and variability. Ann. Rev. Ecol. Syst. 9: 323–347

    Article  Google Scholar 

  • Cody ML, Diamond JM (eds) (1975) Ecology and Evolution of communities. Harvard Univ. Press, Cambridge

    Google Scholar 

  • Feldman MW, Roughgarden J (1975) A population’s stationary distribution and chance of extinction in a stochastic environment with remarks on the theory of species packing. Theor. Pop. Biol. 7: 197–207

    Article  CAS  Google Scholar 

  • Gardiner CW (1983) Handbook of stochastic methods. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Goel NS, Richter-Dyn N (1974) Stochastic models in biology. Academic Press, New York

    Google Scholar 

  • Haken H (1977) Synergetics. An introduction. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Levins R (1969) The effect of random variations of different types on population growth. Proc. Nat. Acad. Sci. US 62: 1061–1065

    Article  CAS  Google Scholar 

  • Lewandowsky M, White BS (1977) Randomness, time scales, and the evolution of biological communities. Evol. Biol. 10: 69–161

    Google Scholar 

  • May RM (1973a) Stability in randomly fluctuating versus deterministic environment. Am. Nat. 107: 621–650

    Article  Google Scholar 

  • Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, Chichester

    Google Scholar 

  • Ricciardi LM (1977) Diffusion processes and related topics in biology (Lecture notes in biomathematics 22) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ricciardi LM (1986a) Stochastic population theory: diffusion processes. In: Hallam TG, Levin SA (eds) Mathematical ecology. An introduction. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Roughgarden J (1975) A simple model for population dynamics in stochastic environments. Amer. Nat. 109: 713–736

    Article  Google Scholar 

  • Turelli M (1986) Stochastic community theory: A partially guided tour. In: Hallam TG, Levin SA (eds) Mathematical ecology. An introduction. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

Theorie

  • Capocelli RM, Ricciardi LM (1974) A diffusion model for population growth in random environment. Theor. Pop. Biol. 5: 28–41

    Article  CAS  Google Scholar 

  • Chesson P (1978) Predator-prey theory and variability. Ann. Rev. Ecol. Syst. 9: 323–347

    Article  Google Scholar 

  • Gardiner CW (1983) Handbook of stochastic methods. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Goel NS, Richter-Dyn N (1974) Stochastic models in biology. Academic Press, New York

    Google Scholar 

  • Haken H (1977) Synergetics. An introduction. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Levins R (1969) The effect of random variations of different types on population growth. Proc. Nat. Acad. Sci. US 62: 1061–1065

    Article  CAS  Google Scholar 

  • Lewandowsky M, White BS (1977) Randomness, time scales, and the evolution of biological communities. Evol. Biol. 10: 69–161

    Google Scholar 

  • Ludwig D (1974) Stochastic population theories. (Lecture notes in biomathematics 3) Springer, Berlin Heidelberg New York

    Google Scholar 

  • May RM (1973a) Stability in randomly fluctuating versus deterministic environment. Am. Nat. 107: 621–650

    Article  Google Scholar 

  • May RM (1973b) Stability and complexity in model ecosystems. Princeton Univ. Press, Princeton

    Google Scholar 

  • Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, Chichester

    Google Scholar 

  • Ricciardi LM (1977) Diffusion processes and related topics in biology (Lecture notes in biomathematics 22) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ricciardi LM (1986a) Stochastic population theory: diffusion processes. In: Hallam TG, Levin SA (eds) Mathematical ecology. An introduction. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Roughgarden J (1975) A simple model for population dynamics in stochastic environments. Amer. Nat. 109: 713–736

    Article  Google Scholar 

  • Turelli M (1977) Random environment and stochastic calculus. Theor. Pop. Biol. 12: 140–178

    Article  CAS  Google Scholar 

  • Turelli M (1986) Stochastic community theory: A partially guided tour. In: Hallam TG, Levin SA (eds) Mathematical ecology. An introduction. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

Theorie

  • Barlett MS (1960) Stochastic population models in ecology and epidemiology. Wiley, New York

    Google Scholar 

  • Chesson P (1978) Predator-prey theory and variability. Ann. Rev. Ecol. Syst. 9: 323–347

    Article  Google Scholar 

  • Chesson P (1981) Models for spatially distributed populations: The effect of within-patch variability. Theor. Pop. Biol. 18: 288–325

    Article  Google Scholar 

  • Cody ML, Diamond JM (eds) (1975) Ecology and Evolution of communities. Harvard Univ. Press, Cambridge

    Google Scholar 

  • Gardiner CW (1983) Handbook of stochastic methods. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Goel NS, Richter-Dyn N (1974) Stochastic models in biology. Academic Press, New York

    Google Scholar 

  • Haken H (1977) Synergetics. An introduction. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Horn HS (1975) Markovian properties of forest succession. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard Univ. Press, Cambridge

    Google Scholar 

  • Ludwig D (1974) Stochastic population theories. (Lecture notes in biomathematics 3) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, Chichester

    Google Scholar 

  • Ricciardi LM (1977) Diffusion processes and related topics in biology (Lecture notes in biomathematics 22) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ricciardi LM (1986b) Stochastic population theory: Birth and death processes. In: Hallam TG, Levin SA (eds) Mathematical ecology. An introduction. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Turelli M (1986) Stochastic community theory: A partially guided tour. In: Hallam TG, Levin SA (eds) Mathematical ecology. An introduction. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Wissel C (1984a) Solution of the master equation of a bistable reaction system. Physica 128A: 150–163

    CAS  Google Scholar 

Theorie

  • Feldman MW, Roughgarden J (1975) A population’s stationary distribution and chance of extinction in a stochastic environment with remarks on the theory of species packing. Theor. Pop. Biol. 7: 197–207

    Article  CAS  Google Scholar 

  • Goel NS, Richter-Dyn N (1974) Stochastic models in biology. Academic Press, New York

    Google Scholar 

  • Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, Chichester

    Google Scholar 

  • Ricciardi LM (1977) Diffusion processes and related topics in biology (Lecture notes in biomathematics 22) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ricciardi LM (1986b) Stochastic population theory: Birth and death processes. In: Hallam TG, Levin SA (eds) Mathematical ecology. An introduction. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Turelli M (1986) Stochastic community theory: A partially guided tour. In: Hallam TG, Levin SA (eds) Mathematical ecology. An introduction. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Wissel C (1984a) Solution of the master equation of a bistable reaction system. Physica 128A: 150–163

    CAS  Google Scholar 

Empirik

  • Den Boer PJ (1979) The significance of dispersal power for the survival of species, with special reference to the carabid beetles in a cultivated countryside. In: Halbach U, Jacobs J (eds). Population ecology. Symp. Mainz 1978. Fortschr. Zool. 25, 2/3, Fischer, Stuttgart

    Google Scholar 

  • Stenseth NC (1979) Where have all the species gone? On the nature of extinction and the red queen hypothesis. Oikos 33: 196–227

    Article  Google Scholar 

Theorie

  • Wissel C (1984a) Solution of the master equation of a bistable reaction system. Physica 128A: 150–163

    CAS  Google Scholar 

  • Wissel C (1984b) Stochastische Einflüsse auf Ökosysteme mit multipler Stabilität; die vollständige Lösung der Master-Gleichung. Verh. Ges. f. Ökol. XII: 447–458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wissel, C. (1989). Zeitliche Variabilität der Umwelt. In: Theoretische Ökologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74535-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74535-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50848-9

  • Online ISBN: 978-3-642-74535-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics