Skip to main content

Production of Hybridomas

  • Chapter
Monoclonal Antibodies

Part of the book series: Springer Laboratory ((SLM))

  • 427 Accesses

Abstract

To be suitable for fusion, myeloma and other tumor cells must fulfil the following four conditions:

  1. 1.

    They may no longer synthesize intact antibody or immunoglobulin light or heavy chains themselves.

  2. 2.

    They must possess an enzyme defect, to allow their selective elimination after the fusion.

  3. 3.

    They should have good fusion properties, so that the number of hybridomas produced is as large as possible.

  4. 4.

    Their molecular properties should induce a high rate of MAB synthesis in the hybridoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt FW, Kellems RE, Bertino JR, Schimke RT (1978) Selective multiplication of dihydrofalate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 253:1357–70d

    PubMed  CAS  Google Scholar 

  • Baker RM, Brunette DM, Mankovitz R, Thompson LH, Whitmore GF, Siminovitch L, Till JE (1974) Quabain-resistant mutants of mouse and hamster cells in culture. Cell 1:9–21

    Google Scholar 

  • Besnard C, Monthioux E, Jami J (1987) Selection against expression of the Escherichia coli gene gpt in hprt +mouse teratocarcinoma and hybrid cells. Mol Cell Biol 7:4139–4141

    PubMed  CAS  Google Scholar 

  • Chan RS, Creagen RP, Reardon MP (1978) Adenosine kinase as a new selective marker in somatic cell genetics: isolation of adenosine kinase-deficient mouse cell lines and human-mouse hybrid cell lines containing adenosine kinase. Somatic Cell Genet 4:1–12

    PubMed  CAS  Google Scholar 

  • Crane IJ, Leung H, Parti S, Meager A (1985) Ricin-resistant human T-cell hybridomas producing interferon gamma. J Immunol Methods 77:207–218

    PubMed  CAS  Google Scholar 

  • D’Urso M, Mareni C, Toniolo D, Piscopo M, Schlessinger D, Luzzatto L (1983) Regulation of glucose 6-phosphate dehydrogenase expression in CHO-human fibroblast somatic cell hybrids. Somatic Cell Genet 9:429443

    Google Scholar 

  • Edwards PAW, Smith CM, Munro Neville A, O’Hare MJ (1982) A human-human hybridoma system based on a fast-growing mutant of the ARH-77 plasma cell leukemia-derived cell line. Eur J Immunol 12:641–648

    PubMed  CAS  Google Scholar 

  • Engleman EG, Foung SKH, Grumet FC, Raubitschek AR, Larrick JW (1985) Humanmurine hybridoma as a fusion partner and its products. Eur Pat Appl EP 148644 A2, 17 Jul 1985, 41pp.

    Google Scholar 

  • Evans HJ, Vijayalaxmi (1981) Induction of 8-azaguanine resistance and sister chromatid exchange in human lymphocytes exposed to mitomycin C and X rays in vitro. Nature 292:601–605

    PubMed  CAS  Google Scholar 

  • Fehlner PF, Bencsath A, Lam T, King TP (1987) The photodecomposition of aminopterin. J Immunol Meth 101:141–145

    CAS  Google Scholar 

  • Foung SKH, Saski DT, Grumet FC, Engleman EG (1982) Production of functional human T-T hybridomas in selection medium lacking aminopterin and thymidine. Proc Natl Acad Sci USA 79:7484–7488

    PubMed  CAS  Google Scholar 

  • Foung SK, Perkins S, Raubitschek A, Larrick J, Lizak G, Fishwild D, Engleman EG, Grumet FC (1984) Rescue of human monoclonal antibody production from an EBV-transformed B cell line by fusion to a human-mouse hybridoma. J Immunol Methods 70:83–90

    PubMed  CAS  Google Scholar 

  • Haskard DO, Archer JR (1984) The production of human monoclonal autoantibodies from patients with rheumatoid arthritis by the EBV-hybridoma technique. J Immunol Methods 74:361–367

    PubMed  CAS  Google Scholar 

  • Hayashi J, Tagashira Y, Higashida H, Hirai S, Yoshida MC, Sekiguchi T (1984) Isolation and characterization of intraspecific cybrids. Effect of mitochondrial DNA on their cellular properties. Exp Cell Res 154:357–366

    PubMed  CAS  Google Scholar 

  • Hayashi J, Tagashira Y, Watanabe T, Sekiguchi T (1983) Effect of mitochondrial DNA composition on the cellular properties of interspecific hybrid cells. Exp Cell Res 148:258–264

    PubMed  CAS  Google Scholar 

  • Hayashi J, Tagashira Y, Yoshida MC (1985) Absence of extensive recombination between inter- and intraspecies mitochondrial DNA in mammalian cells. Exp Cell Res 160:387–395

    PubMed  CAS  Google Scholar 

  • Hirschhorn R, Ellenbogen A, Martiniuk F (1985) An approach to a selection system for adenosine-deaminse-positive (ADA+) cells and detection of rat ADA+ “revertans”. J Cell Physiol 123:277–282

    PubMed  CAS  Google Scholar 

  • Horenstein AL, Glait HM, Koss A (1987) An improved selection procedure for the rescue of hybridomas. A comparative study of methotrexate versus aminopterin. J Immunol Methods 98:145–149

    PubMed  CAS  Google Scholar 

  • Howell N (1983) Origin, cellular expression, and cybrid transmission of mitochondrial CAP-R, PYR-IND, and OLI-R mutant phenotypes. Somatic Cell Genet 9:1–24

    PubMed  CAS  Google Scholar 

  • Howell N, Huang P, Kelliher K, Ryan ML (1983) Mitochondrial genetics of mammalian cells: a mouse antimycin-resistant mutant with a probable alteration of cytochrome b. Somatic Cell Genet 9:143–163

    PubMed  CAS  Google Scholar 

  • Howell N, Huang P, Kolodner RD (1984) Origin, transmission, and segregation of mitochondrial DNA dimers in mouse hybrid and cybrid cell lines. Somatic Cell Mol Genet 10:259–274

    CAS  Google Scholar 

  • Hulette CM, Effros RB, Dillard LC, Walford RL (1985) Production of a human monoclonal antibody to HLA by human-human hybridoma technology. A preliminary report. Am J Pathol 121:10–14

    PubMed  CAS  Google Scholar 

  • Hundhausen T (1990) Untersuchungen zur Herstellung humaner T-Lymphozytenhybridome. Inauguraldiss, Kiel

    Google Scholar 

  • Ichimori Y, Harada K, Hitosumachi S, Tsukamoto K (1987) Establishment of hybridoma secreting human monoclonal antibody against hepatitis B virus surface antigen. Biochem Biophys Res Commun 142:805–812

    PubMed  CAS  Google Scholar 

  • Kaplan HS, Teng NNH, Lam KS, Calvo-Riera F (1986) Methods and cell lines for immortalization and monoclonal antibody production by antigen-stimulated B-lymphocytes. U.S US 4574116 A, 4 Mar 1986, 6pp.

    Google Scholar 

  • Kennett RH (1979) Cell fusion. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 58. Academic Press, New York, pp 345–359

    Google Scholar 

  • Koolwijk P, Rozemuller E, Stad RK, De Lau WBM, Bast BJEG (1988) Enrichment and selection of hybrid hybridomas by Percoll density gradient centrifugation and fluorescent-activated cell sorting. Hybridoma 7:217–225

    PubMed  CAS  Google Scholar 

  • Kozbor D, Lagarde AE, Roder JC (1982) Human hybridomas with antigenspecific Epstein-Barr virus-transformed cell lines. Proc Natl Acad Sci USA 79:6651–6655

    PubMed  CAS  Google Scholar 

  • Kozbor D, Roder JC, Chang TH, Steplewski Z, Koprowski H (1982) Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with murine myeloma. Hybridoma 1:323–328

    PubMed  CAS  Google Scholar 

  • Kusano T, Long C, Green M (1971) A new reduced human-mouse somatic cell hybrid containing human gene for adenine phosphoribosyltransferase. Proc Natl Acad Sci USA 68:82–86

    PubMed  CAS  Google Scholar 

  • Littlefield JW (1964) Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145:709–710

    PubMed  CAS  Google Scholar 

  • Paul J (1980) Zell- und Gewebekulturen. De Gruyter, Berlin

    Google Scholar 

  • Platsoucas CD, Calvelli TA, Kunicka JA (1987) A new method for the development of human T-T cell hybrids without the use of HAT medium. Hybridoma 6:589–603

    PubMed  CAS  Google Scholar 

  • Posner MR, Elboim H, Santos D (1987) The construction and use of a human-mouse myeloma analogue suitable for the routine production of hybridomas secreting human monoclonal antibodies. Hybridoma 6:611–625

    PubMed  CAS  Google Scholar 

  • Riera FC, Blam SB, Teng NN, Kaplan HS (1984) Somatic cell hybrid selection with a transferable dominant marker. Somatic Cell Mol Genet 10:123–127

    CAS  Google Scholar 

  • Taggart RT, Samloff IM (1982) Stable antibody-producing murine hybridomas. Science 219:1228–1230

    Google Scholar 

  • Teng NN, Lam KS, Calvo Riera F, Kaplan HS (1983) Construction and testing of mousehuman heteromyelomas for human monoclonal antibody production. Proc Natl Acad Sci USA 80:7308–7312

    PubMed  CAS  Google Scholar 

  • Tertov VV, Sayadyan HS, Kalatarov GF, Molotkovxky JG, Bergelson LD, Orekhof AN (1989) Use of lipophilic fluorescent probes for the isolation of hybrid cells in flow cytometry. J Immunol Methods 118:139–143

    PubMed  CAS  Google Scholar 

  • Tiebout RF, van Boxtel-Oosterhof F, Stricker EA, Zeijlemaker WP (1987) A human hybrid hybridoma. J Immunol 139:3402–3405

    PubMed  CAS  Google Scholar 

  • Van Snick J, De Plaen E, Boon T (1985) A neomycin-resistant cell line for improved production of monoclonal antibodies to cell surface antigens. Eur J Immunol 15:1151–1153

    PubMed  Google Scholar 

  • Wanda PE, Smith JD (1982) A general method for heterokaryon detection using resonance energy transfer and a fluorescence-activated cell sorter. J Histochem Cytochem 30:1297–1300

    PubMed  CAS  Google Scholar 

  • Wright WE (1984) Toxin-antitoxin selection for isolating somatic cell fusion products between any cell types. Proc Natl Acad Sci USA 81:7822–7826

    PubMed  CAS  Google Scholar 

  • Zybalski W, Hunter Zbalska E, Ragni G (1962) Genetic studies with human cell lines. Natl Cancer Inst Monogr 7:75–89

    Google Scholar 

References

  • Kearney JF, Radbruch A, Liesegang B, Rajewski K (1979) A mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybridoma cell lines. J Immunol 123:1548–1558

    PubMed  CAS  Google Scholar 

  • Köhler G, Howe CS, Milstein C (1976) Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines. Eur J Immunol 6:292–303

    PubMed  Google Scholar 

  • Shulman M, Wilde CG, Köhler G (1978) A better line for making hybridomas secreting specific antibodies. Nature 267:269–271

    Google Scholar 

References

  • Fazekas de St Groth S, Scheidegger D (1980) Production of monoclonal antibodies: strategy and tactics. J Immunol Methods 35:1–21

    Google Scholar 

  • French D, Fischberg E, Buhl S, Scharff MD (1986) The production of more useful monoclonal antibodies. I. Modifications of the basic technology. Immunol Today 7:344–346

    Google Scholar 

  • Kadish JL, Wenc KM (1983) Contamination of polyethylene glycol with aldehydes: implications for hybridoma fusion. Hybridoma 2:87–90

    PubMed  CAS  Google Scholar 

  • Klebe RJ, Mancuso MG (1981) Chemicals which promote cell hybridization. Somatic Cell Genet 7:473–488

    PubMed  CAS  Google Scholar 

  • Lane RD, Crissman RS, Ginn S (1986) High efficiency fusion procedure for producing monoclonal antibodies against weak immunogens. In: Langone JJ, Van Vunakis H (eds) Methods in enzymology, vol 121. Immunochemical techniques. Academic Press, New York, pp 183–192

    Google Scholar 

  • Løvborg U (1982) Monoclonal antibodies. Production and maintenance. Heinemann Medical Books, London

    Google Scholar 

  • Marusich MF (1988) Efficient hybridoma production using previously frozen splenocytes. J Immunol Methods 114:155–159

    PubMed  CAS  Google Scholar 

  • Miyahara M, Nakamura H, Hamaguchi Y (1984) Colcemid treatment of myeloma prior to fusion increases the yield of hybridomas myeloma and splenocyte. Biochem Biophys Res Commun 124:903–908

    PubMed  CAS  Google Scholar 

  • Norwood TH, Zeigler CJ, Martin GM (1976) Dimethyl sulfoxide enhances polyethylene glacol-mediated cell fusion. Somatic Cell Genet 2:263–270

    PubMed  CAS  Google Scholar 

  • Schneiderman S, Farber JL, Baserga R (1979) A simple method for decreasing toxicity of polyethylene glykol in mammalian cell fusion. Somatic Cell Genet 5:263–269

    PubMed  CAS  Google Scholar 

  • Shi L, Xu H, Wang D, Dong Z (1987) An improving method to increase fusion rate by using in vivo myeloma cells from solid tumors in BALB/c mice. Chin J Microbiol Immunol 7:324–327

    Google Scholar 

Further Reading

  • Fox PC, Berenstein EH, Siraganian RP (1980) Enhancing the frequency of antigen-specific hybridomas. Eur J Immunol 11:431–434

    Google Scholar 

  • Stähli C, Staehelin T, Miggiano V, Schmid J, Häring P (1980) High frequencies of antigenspecific hybridomas: dependence on immunization parameters and prediction by spleen cell analysis. J Immunol Methods 32:297–304

    PubMed  Google Scholar 

References

  • Abrams PG, Knost JA, Clarke G, Wilburn S, Oldham RK, Foon KA (1983) Determination of the optimal human cell lines for development of human hybridomas. J Immunol 131:1201–1204

    PubMed  CAS  Google Scholar 

  • Carroll WJ, Thieleman K, Dilley J, Levy R (1986) Mouse × human heterohybridomas as fusion partners with human B cell tumors. J Immunol Methods 89:61–72

    PubMed  CAS  Google Scholar 

  • Croce CM, Linnenback A, Hall W, Steplewski Z, Koprowski H (1980) Production of human hybridomas secreting antibodies to measles virus. Nature 288:488–489

    PubMed  CAS  Google Scholar 

  • Edwards PAW, Smith CM, Neville AM, O’Hare MJ (1982) A human-human hybridoma system based on a fast growing mutant of the ARH-77 plasma cell leukemia-derived line. Eur J Immunol 12:641–648

    PubMed  CAS  Google Scholar 

  • Foung SHK, Perkins S, Raubitschek A, Larrick J, Lizak G, Fishwild D, Engleman EG, Grumet FC (1984) Rescue of human monoclonal antibody production from an EBV-transformed B cell line by fusion to a human-mouse hybridoma. J Immunol Methods 70:83–90

    PubMed  CAS  Google Scholar 

  • Glassy MC, Handley HH, Hagiwara H, Royston I (1983) UC-729–6. A Human lymphoblastoid B-cell line useful for generating antibody-secreting human-human hybridomas. Proc Natl Acad Sci USA 80:6327–6331

    PubMed  CAS  Google Scholar 

  • Heitzmann JG, Cohn M (1983) The WI-L2–729-HF2 human hybridoma system. Mol Biol Med 1:235–243

    PubMed  CAS  Google Scholar 

  • Ichimori Y, Sasano K, Itoh H, Hitotsumachi S, Kimura Y, Kaneko K, Kida M, Tsukamoto K (1985) Establishment of hybridomas secreting human monoclonal antibodies against tetanus toxin and hepatitis B surface antigen against tetanus toxin and hepatitis B surface antigen. Biochim Biophys Res Commun 129:26–33

    CAS  Google Scholar 

  • Kozbor D, Lagarde AE, Roder JC (1982) Human hybridomas constructed with antigenspecific EBV-transformed lines. Proc Natl Acad Sci USA 79:6651–6655

    PubMed  CAS  Google Scholar 

  • Kozbor D, Croce CM (1985) Human hybridoma fusion partner for production of human monoclonal antibodies. Eur Patentanmeldung Nr. EP0182467

    Google Scholar 

  • Larrick JW, Truitt KE, Raubitschek AA, Senyk G, Wang JCN (1983) Characterization of human hybridomas secreting antibodies to tetanus toxoid. Proc Natl Acad Sci USA 80:6367–6380

    Google Scholar 

  • Larrick JW, Raubitschek AA (1986) Gram-negative bacterial endotoxin blocking monoclonal antibodies and cells producing the same formulations containing the same, and the production of all thereof. Eur Patentanmeldung Nr. EP 0174204

    Google Scholar 

  • Östberg L, Pursch E (1983) Human × (mouse × human) hybridomas stabely producing human antibodies. Hybridoma 2:361–367

    PubMed  Google Scholar 

  • Olsson L, Kaplan HS (1980) Human-human hybridomas producing antibodies of predefined specificity. Proc Natl Acad Sci USA 77:5429–5431

    PubMed  CAS  Google Scholar 

  • Ritts RE, Ruiz-Argüelles A, Weyl KG, Bradley AL, Weihmeir B, Jacobson D, Strehlo BL (1983) Establishment and characterization of a human non-secretory plasmoid cell line and its hybridization with human B cells. Int J Cancer 31:133–141

    PubMed  Google Scholar 

  • Rosen A, Gergely P, Jondal M, Klien G (1977) Polyclonal Ig-production after EBV-infection of human lymphocytes in vitro. Nature 26:52–54

    Google Scholar 

  • Royston I, Handley H, Seegmiller E, Thompson LF (1984) Immunoglobulin-secreting human hybridomas from a cultured human lymphoblastoid cell line. American Patent No. 4.451.570

    Google Scholar 

  • Shoenfeld Y, Hsu-Lin SC, Gabriels JE, Silberstein LE, Furie BC, Stollar BD, Schwartz RS (1982) Production of autoantibodies by human-human hybridomas. J Clin Invest 70:205–208

    PubMed  CAS  Google Scholar 

  • Shulman M, Wilde CG, Köhler G (1978) A better line for making hybridomas secreting specific antibodies. Nature 267:296–298

    Google Scholar 

  • Teng NNH, Lam KS, Riera FC, Kaplan HS (1983). Construction and testing of mousehuman heteromyelomas for human monoclonal antibody production. Proc Natl Acad Sci USA 80:7308–7312

    PubMed  CAS  Google Scholar 

  • Teng NNH, Kaplan HS, Herbert JM, Moore C, Douglas C, Wunderlich A, Braude AI (1985) Protection against gram-negative bacteremia and endotoxemia with human monoclonal IgM antibodies. Proc Natl Acad Sci USA 82:1790–1794

    PubMed  CAS  Google Scholar 

  • Thompson KM (1988) Human monoclonal antibodies. Immunol Today 9:113–117

    PubMed  CAS  Google Scholar 

References

  • Blalock JE, Johnson HM, Smith EM, Torres BA (1984) Enhancement of the in vitro antibody response by thyrotropin. Biochem Biophys Res Commun 125:30–34

    PubMed  CAS  Google Scholar 

  • Borrebaeck CAK (1983) In vitro immunization of mouse spleen cells and the production of monoclonal antibodies. Acta Chem Scand B37:647–648

    CAS  Google Scholar 

  • Borrebaeck CAK, Möller SA (1986) In vitro immunization. Effect of growth and differentiation factors on antigen-specific B cell activation and production of monoclonal antibodies to autologous antigens and weak immunogens. J Immunol 136:3710–3715

    PubMed  CAS  Google Scholar 

  • Borrebaeck CAK (1986) In vitro immunizatin for production of murine and human monoclonal antibodies: present status. TIBTECH 6:147–153

    Google Scholar 

  • Borrebaeck CAK, Danielsson L, Möller SA (1987) Human monoclonal antibodies produced from L-leucine methyl ester-treated and in vitro immunized peripheral blood lymphocytes. Biochem Biophys Res Commun 148:941–946

    PubMed  CAS  Google Scholar 

  • Borrebaeck CAK (1987) Development of in vitro immunization in murine and human hybridoma technique. J Pharm Biomed Anal 5:783–792

    PubMed  CAS  Google Scholar 

  • Borrebaeck CAK, Danielsson L, Möller SA (1988) Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes. Proc Natl Acad Sci USA 85:3995–3999

    PubMed  CAS  Google Scholar 

  • Eddy EM, Müller CH, Lingwood CA (1985) Preparation of monoclonal antibody to sulfatoxygalactosylglycerolipid by in vitro immunization with glycolipid-glass conjugate. J Immunol Methods 81:137–146

    PubMed  CAS  Google Scholar 

  • Gratecos D, Astier M, Semeriva M (1987) A new approach to monoclonal antibody production: in vitro immunization with antigens on nitrocellulose using Drosophila myosin heavy chain as an example. J Immunol Methods 103:169–178

    PubMed  CAS  Google Scholar 

  • Hulette CM, Effros RB, Walford RL (1987) Immunization of normal human splenocytes in vitro to produce human monoclonal antibodies to cellular antigens. Tissue Antigens 30:25–33

    PubMed  CAS  Google Scholar 

  • Jokinen I, Poikonen K, Arvilommi H (1985) Synthesis of human immunoglobulins in vitro: comparison of two assays of secreted immunoglobulin. J Immunoassay 6:1–9

    PubMed  CAS  Google Scholar 

  • Kozbor D, Roder JC (1984) In vitro stimulated lymphocytes as a source of human hydridomas. Eur J Immunol 14:23–27

    PubMed  CAS  Google Scholar 

  • Lagace J, Brodeur BR (1985) Parameters affecting in vitro immunization of human lymphocytes. J Immunol Methods 85:127–136

    PubMed  CAS  Google Scholar 

  • Luzzati AL, Giacomini E, Frugoni P (1988) A two-stage culture system for induction of antibody-forming cell clones in cultures of normal human blood lymphocytes. J Immunol Methods 109:123–129

    PubMed  CAS  Google Scholar 

  • Masuho Y, Sugano T, Matsumoto Y, Sawada S, Tomibe K (1986) Generation of hybridomas producing human monoclonal antibodies against Herpes simplex virus after in vitro stimulation. Biochem Biophys Res Commun 135:495–500

    PubMed  CAS  Google Scholar 

  • Reading CL (1982) Theory and methods for immunization in culture and monoclonal antibody production. J Immunol Methods 53:261–291

    PubMed  CAS  Google Scholar 

  • Schelling M (1986) Increase of hybridoma formation by addition of dextran sulfate to in vitro immunization system. Hybridoma 5:159–161

    PubMed  CAS  Google Scholar 

  • Schlom J, Wunderlich D, Teramoto RA (1980) Generation of human monoclonal anti bodies reactive with human mammary carcinoma cells. Proc Natl Acad Sci USA 77:6841–6845

    PubMed  CAS  Google Scholar 

  • Sethi KK, Brandis H (1981) Generation of hybridoma cell lines producing monoclonal antibodies against Toxoplasma gondii or rabies following fusion of in vitro immunized spleen cells with myeloma cells. Ann Immunol 132C:29–39

    CAS  Google Scholar 

  • Sikora K, Wright R (1981) Human monoclonal antibodies to lung cancer antigens. Br J Cancer 43:496–700

    Google Scholar 

  • Strike LE, Devens BH, Lundak RL (1984) Production of human-human hybridomas secreting antibody to sheep erythrocytes after in vitro immunization. J Immunol 12:1798–1804

    Google Scholar 

  • Terashima M, Shimada S, Komatsu H, Osawa T (1987) Production of human-human hybridomas secreting antibody to sheep erythrocytes after in vitro immunization of peripheral blood lymphocytes. Immunol Lett 15:89–93

    PubMed  CAS  Google Scholar 

  • Van Ness J, Laemmli UK, Pettijohn DE (1984) Immunization in vitro and production of monoclonal antibodies specific to insoluble and weak immunogenic proteins. Proc Natl Acad Sci USA 81:7897–7901

    PubMed  Google Scholar 

  • Wasserman RL, Budens RD, Thaxton ES (1986) In vitro stimulation prior to fusion generates antigen-binding human-human hybridomas. J Immunol Methods 93:275–283

    PubMed  CAS  Google Scholar 

References

  • Bendich A, Gabriel E, Machlin LJ (1986) Dietary vitamin E requirement for optimum immune responses in the rat. J Nutr 116:164–171

    Google Scholar 

  • Colnago GL, Jensen LS, Long PL (1984) Effect of selenium on the development of immunity to coccidiosis in chickens. Poult Sci 63:1136–1143

    PubMed  CAS  Google Scholar 

  • Gabrysiak T (1989) Aktivierung humaner B-Lymphozyten durch Mitogene und Antigene in vitro. Bedeutung akzessorischer Immunzellen. Inauguraldiss, Göttingen

    Google Scholar 

  • Gebremichael A, Levy EM, Corwin LM (1984) Adherent cell requirement for the efect of vitamin E on in vitro antibody synthesis. J Nutr 114:1297–1305

    PubMed  CAS  Google Scholar 

  • Gieseler RKH, Peters JH (1988) Accessory cells differentiated from bone marrow in a serumfree liquid culture system. Immunobiol 178:92–93

    Google Scholar 

  • Gieseler RKH, Peters JH (1989) Myeloid bone marrow precursors of the rat develop into accessory dendritic cells at defined serum-free conditions. Exp Cell Biol 57:69

    Google Scholar 

  • Lenzner S (1989) In vitro Stimulation der Antigen-spezifischen Immunglobulin-Synthese humaner B-Lymphozyten. Diplomarbeit, Göttingen

    Google Scholar 

  • Najar HM, Boerner T, Ruppert J, Peters JH (1989) Immunoregulation by accessory cells and macrophages by noncyclic and cyclic nucleotides. Exp Cell Biol 57:110

    Google Scholar 

  • Peters JH, Ruhl S, Friedrichs D (1987) Veiled accessory cells deduced from monocytes. Immunobiology 176:154–166

    PubMed  CAS  Google Scholar 

  • Pletsityi KD, Sukhikh GT, Davydova TV (1984) Vliianie vitamina E soderzhanie T- i B-limfotsitov v perifericheskoi krovi i nekotorye pokazateli nespetsificheskoi rezistentnosti. Vopr Pitan 4:42–44

    PubMed  Google Scholar 

  • Reddy PG, Morrill JL, Minocha HC, Morrill MB, Dayton AD, Frey RA (1986) Effect of supplemental vitamin E on the immune system of calves. J Dairy Sci 69:164–171

    PubMed  CAS  Google Scholar 

References

  • Borrebaeck CAK, Danielsson L, Möller SA (1988) Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes. Proc Natl Acad Sci USA 85:3995–3999

    PubMed  CAS  Google Scholar 

  • Thiele DL, Kurosaka M, Lipsky PE (1983) Phenotype of the accesory cell necessary for mitogen-stimulated T and B cell responses in human peripheral blood: delineation by its sensitivity to the lysosomotropic agent, L-leucine methyl ester. J Immunol 131:2882–2290

    Google Scholar 

References

  • Hoffmann MK, Chun M, Hirst JA, Mittler RS (1988) The IgM antibody response in cultures of mouse and human lymphoid cells. In: Borreback CAK (ed) In vitro immunization in hybridoma technology. Elsevier Amsterdam, pp 139–161

    Google Scholar 

References

  • Agostino A, Idéo G (1965) Separation of large numbers of lymphocytes from human blood. Experientia 21:82–83

    Google Scholar 

  • Borrebaeck CAK, Danielsson L, Möller SA (1988) Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes. Proc Natl Acad Sci USA 85:3995–3999

    PubMed  CAS  Google Scholar 

  • Ocklind G (1988) All CD2-positive human lymphocytes rosette with sheep erythrocytes in the presence of polyethylene glycol. J Immunol Methods 112:169–172

    PubMed  CAS  Google Scholar 

References

  • Baron D, Hartlaub U (1987) Humane monoklonale Antikörper. Springer, Berlin Heidelberg New York, p 128

    Google Scholar 

  • Borrebaeck CAK, Danielsson L, Möller SA (1988) Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes. Proc Natl Acad Sci USA 85:3995–3999

    PubMed  CAS  Google Scholar 

  • Foon KA, Abrams PG, Rossio JL; Knost JA, Oldham RK (1983) Human hybridomas: comparison of human cell lines for production of human hybridomas and development of human hybridomas producing antigen-specific IgG using in vitro-immunized peripheral blood cells as fusing parameters. In: Boss BD, Langman R, Towbridge I, Dulbecco R (eds) Monoclonal antibodies and cancer. Academic Press, New York, pp 143–155

    Google Scholar 

References

  • Hadden JW, Coffey RG (1982) Cyclic nucleotides in mitogen-induced lymphocyte proliferation. Immunol Today 3:299–304

    CAS  Google Scholar 

References

  • Anderson MA, Gusella JF (1984) Use of Cyclosporin A in establising Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro 20:856–858

    PubMed  CAS  Google Scholar 

  • Knebel-Doeberitz M, von, Bornkamm GW, Hausen H zur (1983) Establishment of spontaneously outgrowing lymphoblastoid cell lines with Cyclosporin A. Med Microbiol Immunol 172:87–99

    Google Scholar 

  • Miller G, Lipman M (1973) Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci USA 70:190–194

    PubMed  CAS  Google Scholar 

References

  • Abken H, Jungfer H, Albert W, Willicke K (1986) Immortalization of human lymphocytes by fusion with cytoplasts of transformed mouse L cells. J Cell Biol 103:795–805

    PubMed  CAS  Google Scholar 

References

  • Abken H, Jungfer H, Albert W, Willicke K (1986) Immortalization of human lymphocytes by fusion with cytoplasts of transformed mouse L cells. J Cell Biol 103:795–805

    PubMed  CAS  Google Scholar 

  • Cepko C (1988) Immortalization of neural cells via oncogene transduction. Trends Neurol Sci 11:6–8

    CAS  Google Scholar 

  • Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602

    PubMed  CAS  Google Scholar 

  • Ruley HE (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304:602–606

    PubMed  CAS  Google Scholar 

  • Stacey DW, Kung HF (1984) Tranformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature 310:508–511

    PubMed  CAS  Google Scholar 

  • Willecke K, Abken HJ, Jungfer H, Barchet H (19878) Immortalisierung durch DNS-Übertragung. Offenlegungsschrift DE 3627326 Al, Deutsches Patentamt

    Google Scholar 

References

  • Bischoff R, Eisert RM, Schedel I, Veinken J, Zimmermann U (1982) Human hybridoma cells produced by electrofusion. FEBS Lett 147:64–68

    PubMed  CAS  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    PubMed  Google Scholar 

  • Lo MMS, Tsong TY, Conrad MK, Strittmatter SM, Hester LD, Snyder SH (1984) Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature 310:792–794

    PubMed  CAS  Google Scholar 

  • Ringertz NR, Savage RE (1976) Cell hybrids. Academic Press, New York

    Google Scholar 

  • Vienken J, Zimmermann U (1985) An improved electrofusion technique for production of mouse hybridoma cells. FEBS Lett 182:278–279

    PubMed  CAS  Google Scholar 

  • Vienken J, Zimmermann U, Fouchard M, Zagury D (1983) Electrofusion of myeloma cells on the single cell level. FEBS Lett 163:54–56

    PubMed  CAS  Google Scholar 

  • Wojchowski DM, Sytkowski AJ (1986) Hybridoma production by simplified avidinmediated electrofusion. J Immunol Methol 90:173–177

    CAS  Google Scholar 

References

  • Blas AL de, Ratnaparkhi MV, Mosimann JE (1983) Estimation of the number of monoclonal hybridomas in a cell-fusion experiment. In: Langone JJ, van Vunakis H (eds) Methods in enzymology, immunochemical techniques. Academic Press, New York, pp 36–39

    Google Scholar 

References

  • Kontsekova E, Novak M, Kontsek P, Borecky L, Lesso J (1988) The effect of postfusion cell density on establishment of hybridomas. Folia Biol Praque 34:18–22

    CAS  Google Scholar 

References

  • Marusich MF (1988) Efficient hybridoma production using previously frozen splenocytes. J Immunol Methods 124:155–159

    Google Scholar 

  • Shi L, Xu H, Wang D, Dong Z (1987) An improving method to increase fusion rate by using in vivo myeloma cells from solid tumors in BALB/c mice. Chin J Microbiol Immunol 7:324–327

    Google Scholar 

  • Shin S-I, van Diggelen OP (1977) In: McGarrity GJ, Murphy DG, Nichols WW (eds) Mycoplasma infection of cell cultures. New York, p 191

    Google Scholar 

  • Wetzel GD, Kettman JR (1981) Activation of murine B lymphocytes, III. stimulation of B lymphocyte clonal growth with lipopolysaccharide and dextran sufate. J Immunol 126:723–728

    PubMed  CAS  Google Scholar 

References

  • Campbell AM (1985) Monoclonal antibody technology. Elsevier, Amsterdam

    Google Scholar 

  • Civin CI, Banquerigo ML (1983) Rapid, efficient cloning of murine hybridoma cells in low gelaton temperature agarose. J Immunol Methods 61:1–8

    PubMed  CAS  Google Scholar 

References

  • Bell EB, Brown M, Ritternberg MB (1983) In vitro antibody synthesis in 20 μl hanging drops. J Immunol Methods 62:137–145

    PubMed  CAS  Google Scholar 

  • Campbell AM (1984) Cloning by limiing dilution. In: Campbell AM (ed) Monoclonal antibody technology. Elsevier, Amsterdam, pp 158–160

    Google Scholar 

  • Coller HA, Coller BS (1983) Poisson statistical analysis of repetitive subcloning by the limiting dilution technique as a way of assessing hybridoma monoclonality. In: Langone JJ, Van Vunakis H (eds) Methods in Enzymol, vol 121. Academic Press. New York, pp 412–417

    Google Scholar 

  • Harlow E, Lane D (1988) Single cell cloning. In: Harlow E, Lane D (eds) Antibodies. A laboratory manual. Cold Spring Harbor Laboratory, pp 219–230

    Google Scholar 

  • Leitzke R, Unsicker K (1985) A statistical approach to determine monoclonality after limiting cell plating of a hybridoma clone. J Immunol Methods 76:223–228

    Google Scholar 

  • McCullough KC, Butcher RN, Parkinson D (1983) Hybridoma cell lines secreting monoclonal antibodies against foot-and mouth disease virus (FMDV). II Cloning conditions. J Biol Stand 11:183

    PubMed  CAS  Google Scholar 

  • Thompson KM, Hough DW, Maddison PJ, Melamed MD, Hughes-Jones N (1986) The efficient production of stable, human monoclonal antibody-secreting hybridomas from EBV-transformed lymphocytes using the mouse myeloma X63-Ag8.653 as a fusion partner. J Immunol Methods 94:7–12

    PubMed  CAS  Google Scholar 

Further Reading

  • Bishop CE (1981) A miniaturised single-step method of cell cloning. J Immunol Methods 46:47–51

    PubMed  CAS  Google Scholar 

  • Hlinak A, Jahn S, Grunow R, Mehl M, Heider G, Baehr R von (1987) Optimierungsversuche zur Klonierung von Maus-Maus- und Mensch-Maus-Hybridomen unter Verwendung verschiedener Feederzelltypen. Mh Vet-Med 42:801–804

    Google Scholar 

  • Koziol JA (1988) Evaluation of monoclonality of cell line from sequential dilution assays. Part II. J Immunol Methods 107:151–152

    PubMed  CAS  Google Scholar 

  • Koziol JA, Ferrari C, Chisari FVs (1987) Evaluation of monoclonality of cell lines from sequential dilution assays. J Immunol Methods 105:139

    PubMed  CAS  Google Scholar 

  • Makowski F, Joffe MI, Rittenberg MB (1986) Single cell cloning of Epstein-Barr virus transformed cells in 20 μl hanging drops. J Immunol Methods 90:85–87

    PubMed  CAS  Google Scholar 

  • Underwood PA, Bean PA (1988) Hazards of the limiting-dilution method of cloning hybridomas. J Immunol Methods 107:119–128

    PubMed  CAS  Google Scholar 

Further reading

  • Dangl JL, Herzenberg LA (1982) Selection of hybridomas and hybridoma variants using the fluorescence activated cell sorter. J Immunol Methods 52:1–14

    PubMed  CAS  Google Scholar 

  • Melamed MR, Lindmo T, Mendelsohn ML (1990) Flow cytometry and sorting. Wiley-Liss, New York

    Google Scholar 

  • Ormerod MG (1990) Flow cytometry. Oxford University Press, Oxford

    Google Scholar 

  • Parks DR, Herzenberg LA (1984) Fluorescence-activating cell sorting: theory, experimental optimization, and applications in lymphoid cell biology. Methods Enzymol 108:197–241

    PubMed  CAS  Google Scholar 

  • Shapiro HM (1988) Practical flow cytometry. Liss, New York

    Google Scholar 

  • Van Dilla MA, Dean PN, Laerum OD, Melamed MR (1985) Flow cytometry: instrumentation and data analysis. Academic Press, London

    Google Scholar 

  • Yen A (1989) Flow cytometry: advanced research and clinical applications. Vols I and II, CRC Press, Boca Raton

    Google Scholar 

References

  • Lane RD, Crissman RS, Ginn S (1986) High efficiency fusion procedure for producing monoclonal antibodies against weak immunogens. Methods Enzymol 121:183–192

    PubMed  CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse myeloma cells by electrofusion in high electric fields. EMBO J 1:841–845

    PubMed  CAS  Google Scholar 

References

  • Ossendorp FA, Bruning PF, Van den Brink JAM, De Boer M (1989) Efficient selection of high-affinity B cell hybridomas using antigen-coated magnetic beads. J Immunol Methods 120:191–200

    PubMed  CAS  Google Scholar 

  • Rüker F, Reiter S, Jungbauer A, Liegl W, Himmler G, Steinkellner H, Wenisch E, Steindl F, Wagner K, Katinger H (1987). Self-hybridization of hybridomas leads to stabilization of clones and increased yield of monoclonal antibodies. Dev Biol Stand 66:71–74

    PubMed  Google Scholar 

  • Siraganian RP, Fox PC, Berenstein EH (1983) Methods of enhancing the frequency of antigen-specific hybridomas. Methods Enzymol 92:17–26

    PubMed  CAS  Google Scholar 

  • Stähli C, Staehelin T, Miggiano V (1983) Spleen cell analysis and optimal immunization for high-frequency production of specific hybridomas. In: Langone JJ, van Vunakis H (Eds) Methods in enzymology, Immunochemical Techniques. Academic Press, New York, pp 26–36

    Google Scholar 

  • Wang L, Feingers J, Gorsky Y, Catalano-Sherman J, Inbar M (1986) Monoclonal antibodies embedded in their hybridoma cells: an immunodiagnostic concept. Hybridoma 5:237–242

    PubMed  CAS  Google Scholar 

References

  • Aguila HL, Pollock RR, Spira G, Sharff MD (1986) The production of more useful monoclonal antibodies. 2. The use of somatic-cell genetic recombinant DNA technology to tailor-make monoclonal antibodies. Immuno Today 7:380–383

    CAS  Google Scholar 

  • Alberini C, Biassoni R, DeAmbrtosis S, Vismara D, Sitia R (1987) Differentiation in the murine B cell lymphoma I.29: individual μ+ clones may be induced by lipopolysaccharide to both IgM secretion and isotype switching. Eur J Immunol 17:555–562

    PubMed  CAS  Google Scholar 

  • Brüggemann M, Free J, Diamond A, Howard J, Cobbold S, Waldmann H (1986) Immunolglobulin heavy chain locus of the rat: striking homology to mouse antibody genes. Proc Natl Acad Sci USA 83:6075–6079

    PubMed  Google Scholar 

  • Cavalli-Sforza LL, Lederberg J (1955) Isolation of pre-adaptive mutants in bacteria by sib selection. Genetics 41:367–381

    Google Scholar 

  • Hale G, Cobbold SP, Waldman H, Easter G, Matejtschuk P, Coobs RRA (1987) Isolation of low-frequency class-switch variants from rat hybrid myelomas. J Immunol Methods 103:59–67

    PubMed  CAS  Google Scholar 

  • Kaminski MS, Kitamura K, Maloney DG, Campbelld MJ, Levy R (1986) Importance of antibody isotype in monoclonal anti-idiotype therapy of a murine B cell lymphoma. A study of hybridoma class switch variants. J Immunol 136:1123–1130

    PubMed  CAS  Google Scholar 

  • Kiesel S, Haas R, Moldenhauer G, Kvalheim G, Pezzutto A, Doerken B (1987) Removal of cells from a malignant B-cell line from bone marrow with immunomagnetic beads and with complement and immunoglobulin switch variant mediated cytolysis. Leuk Res 11:119–125

    Google Scholar 

  • Kipps TJ (1985) Switching the isotype of monoclonal antibodies. In: Springer TA (ED) Hybridoma technology in the biosciences and medicine. Plenum, New York, pp 89–101

    Google Scholar 

  • Komori S, Yamasaki N, Shigeta M, Isojima S, Watanabe T (1988) Production of heavy-chain class switch variants of human monoclonal antibodies by recombinant DNA technology. Clin Exp Immunol 71:508–516

    PubMed  CAS  Google Scholar 

  • Morrison SL (1985) Transfectomas provide novel chimeric antibodies. Science 229:1201–1207

    Google Scholar 

  • Müller CE, Rajewsky K (1983) Isolation of immunoglobulin class switch variants from hybridoma lines secreting anti-idiotype antibodies by sequential sublining. J Immunol 131:877–881

    PubMed  Google Scholar 

  • Pluschke G, Bordmann G (1987) Isolation of rat immunoglobulin class switch variants of rat-mouse hybridomas by enzyme-linked immunosorbent assay and sequential sublining. Eur J Immunol 17:413–416

    PubMed  CAS  Google Scholar 

  • Preud’Homme JL, Birshtein BK, Sharff MD (1975) Variants of a mouse myeloma cell line that synthesize immunoglobulin heavy chains having an altered serotype. Proc Natl Acad Sci USA 72:1427–1430

    PubMed  Google Scholar 

  • Radbruch A (1986) Isotype switch variants. In: Weir DM (ed) Handbook of experimental immunology, 4th edn. Blackwell, Oxford, pp 110.1–110.12

    Google Scholar 

  • Schmitz J, Radbruch A (1989) An interleukin 4-induced DNase I hypersensitive site indicates opening of the gamma 1 switch region prior to switch recombination. Int Immunol 1:570–575

    PubMed  CAS  Google Scholar 

  • Spira G, Bargellesi A, Pollock RR, Aguila HL, Scharff MD (1985) The generation of better monoclonal antibodies through somatic mutation. In: Springer TA (ed) Hybridoma technology in the biosciences and medicine. Plenum, New York, pp 77–88

    Google Scholar 

References

  • Croce CM, Linnenback A, Hall W, Steplewski Z, Koprowski H (1980) Production of human hybridomas secreting antibodies to measles virus. Nature 288:488489

    Google Scholar 

  • Koropatnik J, Pearson J, Harris JF (1988) Extensive loss of antibody production in heteromyeloma hybridoma cells. Mol Biol Med 5:69–83

    Google Scholar 

  • Rushton AR (1976) Quantitative analysis of human chromosome segregation in man-mouse somatic cell hybrids. Cytogenet Cell Genet 17:343–254

    Google Scholar 

References

  • Aguila HL, Pollock RR, Spira G, Scharff MD (1986) The production of more useful monoclonal antibodies. 2. The use of somatic-cell genetic recombinant DNA technology to tailor-make monoclonal antibodies. Immunol Today 7:380–383

    CAS  Google Scholar 

  • Boulianne G, Hozumi N, Shulman MJ (1984) Production of functional chimaeric mouse/human antibody. Nature 312:643–646

    PubMed  CAS  Google Scholar 

  • Brennan M, Davison PF, Paulus H (1985) Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229:81–83

    PubMed  CAS  Google Scholar 

  • Burnett KG, Martinis J, Bartholomew RM (1985) Production of bifunctional antibodies by hybridoma technology. In: Cheremisinoff PN, Quellette RP (Eds) Biotechnology: applications and research. Technomic, Lancaster PA (USA), pp 401–409

    Google Scholar 

  • Campbell AM, Whitford P, Leake RE (1987) Human monoclonal antibody multispecificity. Br J Cancer 56:709–713

    PubMed  CAS  Google Scholar 

  • Corvalan JRF, Smith W (1987) Construction and characterization of a hybrid-hybrid monoclonal antibody recognizing both carcinoembryonic antigen (CEA) and vinca alkaloids. Cancer Immunol Immunother 24:127–132

    PubMed  CAS  Google Scholar 

  • De Lau WBM, Van Loon AE, Heije K, Valerio D, Bast BJEG (1989) Production of hybrid hybridomas based on HAT-neomycin double mutants. J Immunol Methods 117:1–8

    PubMed  Google Scholar 

  • Kang AS, Burton DR, Lerner RA (1991) Combinatorial immunoglobulin libraries in phage lambda. In: Lerner R, Burton DR (eds) Methods: a companion to methods in enzymology 2 (2), 111–118

    Google Scholar 

  • Klausner A (1987) Second-generation antibodies: stage set for „immunological star wars”. Biotechnology 5:867–868

    Google Scholar 

  • Komori S, Yamasaki N, Shigeta M, Isojima S, Watanabe T (1988) Production of heavy-chain class switch variants of human monoclonal antibodies by recombinant DNA technology. Clin Exp Immunol 71:508–516

    PubMed  CAS  Google Scholar 

  • Lanziavecchia A, Scheidegger D (1987) The use of hybrid hybridomas to target human cytotoxic T lymphocytes. Eur J Immunol 17:105–111

    Google Scholar 

  • Martinis J, Kull JF, Franz G, Bartholomew RM (1982) Monoclonal antibodies with dual specificity. Protides Biol Fluids 30:311–316

    Google Scholar 

  • Milstein C, Cuello AC (1983) Hybrid hybridomas and their use in immunohistochemistry. Nature 305:537–540

    PubMed  CAS  Google Scholar 

  • Milstein C, Cuello AC (1984) Hybrid hybridomas and the production of bi-specific monoclonal antibodies. Immunol Today 5:299–304

    CAS  Google Scholar 

  • Morrison SL (1985) Transfectomas provide novel chimeric antibodies. Science 229:1202–1207

    PubMed  CAS  Google Scholar 

  • Morrison SL, Johnson M J, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 81:6851–6855

    PubMed  CAS  Google Scholar 

  • Nisonoff A, Mandy WJ (1962) Quantitative estimation of the hybridization of rabbit antibodies. Nature 194:355–359

    PubMed  CAS  Google Scholar 

  • Nolan O, O’Kennedy R (1990) Bifunctional antibodies: concept, production and applications. Biochim Biophys Acta 1040:1–11

    PubMed  CAS  Google Scholar 

  • Reading CL (1983) European Patent Application No82303197.6, Publication No0068763

    Google Scholar 

  • Runge MS, Bode C, Savard CE, Matsueda GR, Haber E (1990) Antibody-directed fibrinolysis: abispecific (Fab’)2 that binds to fibrin and tissue plasminogen activator. Bioconjug Chem 1:274–277

    PubMed  CAS  Google Scholar 

  • Staerz UD, Bevan MJ (1986) Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Natl Acad Sci USA 83:1453–1457

    PubMed  CAS  Google Scholar 

  • Tutt A, Greenman J, Stevenson GT, Glennie MJ (1991) Bispecific F(ab’gamma) 3 antibody derivatives for redirecting unprimed cytotoxic T cells. Eur J Immunol 21:1351–1358

    PubMed  CAS  Google Scholar 

  • Winter G, Milstein C (1991) Man-made antibodies. Nature 349:293–299

    PubMed  CAS  Google Scholar 

References

  • Baumgarten H, Kürzinger K (1989) Designation of antibodies and their derivatives. Suggestions for a general nomeclature. J Immunol Methods 122:1–5

    PubMed  CAS  Google Scholar 

  • Bernard A, Boumsell L, Dausset J, Milstein C, Schlossman SF (1984) Leucocyte typing. Human leukocyte differentiation antigens detected by monoclonal antibodies. Springer, Berlin Heidelberg New York pp 133–134

    Google Scholar 

  • Bulletin of the World Health Organization (1978) Proposed rules for the designation of immunoglobulins of animal origin. Bull WHO 56:815–817

    Google Scholar 

  • Erber WN (1990) Human leukocyte differentiation antigens: review of the CD nomenclature. Pathology 22:61–69

    PubMed  CAS  Google Scholar 

  • Knapp W, Rieber P, Dörken B, Schmidt RE, Stein H, vd Borne K (1989a) Leucocyte typing IV. Oxford University Press, Oxford

    Google Scholar 

  • Knapp W, Rieber P, Dörken B, Schmidt RE, Stein H, vd Borne K (1989b) Towards a better definition of human leucocyte surface molecules. Immunol Today 10:253–258

    PubMed  CAS  Google Scholar 

  • McMichael AJ (1987) Leucocyte typing III. Oxford University Press, Oxford

    Google Scholar 

  • Reinherz EL, Haynes BF, Nadler LM, Bernstein ID (1986) Leukocyte typing II. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baron, D. et al. (1992). Production of Hybridomas. In: Peters, J.H., Baumgarten, H. (eds) Monoclonal Antibodies. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74532-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74532-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74534-8

  • Online ISBN: 978-3-642-74532-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics