Skip to main content

Immunization

  • Chapter
  • 340 Accesses

Part of the book series: Springer Laboratory ((SLM))

Abstract

With the help of monoclonal antibodies and gene engineering, the bioscien-ces have obtained much more detailed knowledge about molecular mechanisms in biological processes in the last four decades. A few examples illustrating this advance include the identification of functionally specific antigens in leucocyte membranes, and of different functional domains in proteins, and also the diagnosis and therapy of human tumors with the help of tumor-specific antibodies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Osmond DG, Fahlman MTE, Fulop GM, Rahal DM (1981) Regulation and localization of lymphocyte production in the bone marrow. In: Porter R, Whelan J (eds) Microenvironments in haematopoietic and lymphoid differentiation. Pitman, London, pp 68–82

    Google Scholar 

References

  • Ahlstedt S, Bjorksten B (1983) Specific antibody responses in rats and mice after daily immunization without adjuvant. Int Arch Allergy Appl Immunol 71:293–299

    Article  PubMed  CAS  Google Scholar 

  • Goding JW (1983) Monoclonal antibodies: principles and practice. Academic Press, London

    Google Scholar 

  • Goodman MG, Chenoweth DE, Weigle WO (1982) Potentiation of the primary humoral immune response in vitro by C5a anaphylatoxin. J Immunol 129:70–75

    PubMed  CAS  Google Scholar 

References

  • Arnon R (1986) Peptides as immunogens: prospects for synthetic vaccines. Curr Top Microbiol Immunol 130:1–12

    Article  PubMed  CAS  Google Scholar 

  • Atassi MZ (1986) Preparation of monoclonal antibodies to preselected protein regions. Methods Enzymol 121:69–95

    Article  PubMed  CAS  Google Scholar 

  • Bernard D, Nicolas C, Maurizis JC, Betail G (1983) A new method of preparing hapten-carierer immunogens by coupling Saccharomyces cerevisiae by periodate oxidation. J Immunol Mathods 61:351–357

    Article  CAS  Google Scholar 

  • Bernatowicz MS, Matsueda GR (1986) Preparation of peptide-protein immunogens using N-succinimidyl bromacetate as a heterobifunctional crosslinking reagent. Anal Biochem 155:95–102

    Article  PubMed  CAS  Google Scholar 

  • Bauminger S, Wilchek M (1980) The use of carboodiimide in the preparation of immunizing conjugates. Methods Enzymol 70:151–159

    Article  PubMed  CAS  Google Scholar 

  • Erlanger BF (1980) The preparation of antigenic hapten-carrier conjugates. Methods Enzymol 70:85–104

    Article  PubMed  CAS  Google Scholar 

  • Fischer PM, Comis A, Howden MEH (1989) Direct immunization with synthetic peptidylpo-lymide resin. Comparison with antibody production from free peptide and conjugates with carrier proteins. J Immunol Methods 118:119–123

    Article  PubMed  CAS  Google Scholar 

  • Gras-Masse HS, Jolivet ME, Audibert FM, Beachey EH, Chedid LA, Tartar AL (1986) Influence of CONH2 or COOH as C-terminus groups on the antigenic characters of immunogenic peptides. Mol Immunol 23:1391–1395

    Article  PubMed  CAS  Google Scholar 

  • Horn M, Novak C (1988) A monotoring and control chemistry for solid-phase peptide synthesis. Int Biotechnol Lab 4:30–37

    Google Scholar 

  • Kabakoff DS (1980) Chemical aspects of enzyme-immunoassay. In: Maggio ET (ed) Enzyme immunoassay. CRC Press, Boca Raton, pp 72–104

    Google Scholar 

  • Klinman DM, Higgins KW, Conover J (1991) Sequential immunizations with rgpl20s from independent isolates of human immunodeficiency virus type 1 induce the preferential expansion of broadly crossreactive B cells. J Exp Med 173:881–887

    Article  PubMed  CAS  Google Scholar 

  • De Macedo Brigido M, Sabbaga J, Brentani RR (1990) Are synthetic peptides suitable for the detection of continuous epitopes only? Immunol Lett 24:191–198

    Article  Google Scholar 

  • Mariani M, Bracci L, Presentini R, Nucci D, Neri P, Antoni G (1987) Immunogenicity of a free synthetic peptide: carrier-conjugation enhances antibody affinity for the native protein. Mol Immunol 24:297–303

    Article  PubMed  CAS  Google Scholar 

  • Palfreyman JW, Aitcheson TC, Taylor P (1984) Guidelines for the production of polypeptide specific antisera using small synthetic oligopeptides as immunogens. J Immunol Methods 75:383–393

    Article  PubMed  CAS  Google Scholar 

  • Pessi A (1991) Multiple antigen peptides (MAPs): a step further towards synthetic peptide vaccines. Chimicaoggi 9/1–2:51–56

    CAS  Google Scholar 

  • Reichlin M (1980) Use of glutaraldehyde as coupling agent for proteins and peptides. Methods Enzymol 70:159–165

    Article  PubMed  CAS  Google Scholar 

  • Schaaper. WMM, Lankhof H, Puijk WC, Meloen RH (1989) Manipulation of antipeptide immune response by varying the coupling of the peptide with the carrier protein. Mol Immunol 26:81–85

    Article  PubMed  CAS  Google Scholar 

  • Sela M, Arnon R (1987) From synthetic polypeptides to synthetic vaccines — antigen structure and function. In: Sercarz EE, Berzofsky JA (eds) Immunogenicity of protein antigens: repertoire and regulation. CRC Press, Boca Raton, pp 6–12

    Google Scholar 

  • Shapiro SZ, Kimmel Be (1987) A simple method for the production of specific antiserum to protein encoded in cloned genes. Immunization with precipitin lines. J Immunol Methods 97:275–279

    Article  PubMed  CAS  Google Scholar 

  • Skowski WR, Fisher DA (1972) The use of thyroglobulin to induce antigenicity to small molecules. J Lab Clin Med 80:134–144

    Google Scholar 

Further Reading

  • Bailey JM (1984) The production of antisera. In: Walker JM (ed) Methods in molecular biology, vol 1. Proteins. Humana Press, Clifton, NJ, pp 295–300

    Google Scholar 

  • Barth R, Jaeger O (1978) Erfahrungen mit neuen Impfstoffen bei der aktiven Schutzimpfung der Tiere gegen Tollwut. Münch Med Wochenschr 120:297–298

    CAS  Google Scholar 

  • Campbell JB, Maharaj I, Roith J (1985) Vaccine formulations for oral immunization of laboratory animals and wildlife against rabies. In: Kuwert E, Merieux C, Koprowski H, Bogel K (eds) Rabies in the tropics. Springer, Berlin Heidelberg New York, pp 1–786

    Google Scholar 

  • Du Plessis JL, Malan L (1987) The block method of vaccination against heartwater. J Vet Res 54:493–495

    Google Scholar 

  • Friedman H, Klein TW, Widen R, Newton C, Blanchard DK, Yamamoto Y (1988) Legionella pneumonia immunity and immunomodulation: nature and mechanisms. Adv Exp Med Biol 239:327–341

    PubMed  CAS  Google Scholar 

  • Howell DG (1965) Principles of immunization in animals and man. I. A review of some immunological problems associated with veterinary preventive medicine. Vet Rec 77:1391–1395

    Article  PubMed  CAS  Google Scholar 

  • Hyde RM (1967) Antiserum production in experimental animals. Adv Appl Microbiol 9:39–67

    Article  PubMed  CAS  Google Scholar 

  • Kovalev IE (1978) Morphine and related compounds inducers of the synthesis of specific antibodies, literature review. Khim-Farm ZH 12:3–14

    CAS  Google Scholar 

  • NN (1983) Standardization of immunological procedures. Enteric infections in man and animals. Dev biol stand, vol 53. Karger, Basel, pp 3–352

    Google Scholar 

  • Soltys MA (1973) A review of studies on immunization against protozoan diseases of animals. Z Tropenmed Parasitol 24:309–322

    PubMed  CAS  Google Scholar 

References

  • Goding JW (1983) Monoclonal antibodies: principles and practice. Academic Press, London

    Google Scholar 

  • Oliver LK, Cano C (1977) Removal of an endogenous antigen from an antibody to increase its effective affinity constant, as illustrated by triidothyronine assay. Clin Chem 23:2039–2042

    PubMed  CAS  Google Scholar 

  • Rathjen DA, Underwood PA, Whalley JM (1986) An evaluation of some in vivo immunization strategies for the production of monoclonal antibodies to insulin and ACTH. J Biol Stand 14:1–14

    Article  PubMed  CAS  Google Scholar 

  • Raymond Y, Suh M (1986) Lymph node primary immunization of mice for the production of polyclonal and monoclonal antibodies. J Immunol Methods 93:103–106

    Article  PubMed  CAS  Google Scholar 

  • Reilly TM, Root RT (1986) Production of idiotypic and anti-idiotypic antibodies by Balb/c mice in response to immunizations with glucagon, vasopressin, or insulin: supporting evidence for the network theory. J Immunol 137:597–602

    PubMed  CAS  Google Scholar 

  • Spitz M, Spitz L, Thorpe R, Eugui E (1984) Intrasplenic primary immunization for the production of monoclonal antibodies. J Immunol Methods 70:39–43

    Article  PubMed  CAS  Google Scholar 

  • Stähli C, Staehelin T, Miggiano V (1983) Spleen cell analysis and optimal immunization for high-frequency production of specific hybridomas. Methods Enzymol 92:26–36

    Article  PubMed  Google Scholar 

  • Stähli C, Staehelin T, Miggiano V, Schmidt J, Häring P (1980) High frequencies of antigen-specific hybridomas: dependence on immunization parameters and prediction by spleen cells analysis. J Immunol Methods 32:297–304

    Article  PubMed  Google Scholar 

References

  • Barald KF (1987) Purification of antigen-specific B cells by adherence to whole-cell antigens. Methods Enzymol 121:89–102

    Google Scholar 

  • Bazin R, Lemieux R (1988) Effect of the elapsed time after the final antigen boost on the specificity of monoclonal antibodies produced by B cell hybridomas. J Immunol Methods 112:53–56

    Article  PubMed  CAS  Google Scholar 

  • French D, Fischberg E, Buhl S, Scharff MD (1986) The production of more useful monoclonal antibodies. Immunol Today 7:344–346

    Article  Google Scholar 

  • Gearing AJH, Bird CR, Callus M, Thorpe R (1986) The effect of primary immunization and Concanavalin A on the production of monoclonal natural antibodies. Hybridoma 5:243–247

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies. A laboratory manual. Cold Spring Harbor Laboratory, pp 55–137

    Google Scholar 

  • Herbert WJ, Kristensen F (1986)) Laboratory animal techniques for immunology. In: Weir DM, Herzenberg LA, Blackwell C, Herzenberg LA (eds) Handbook of experimental immunology: applications of immunological methods in biomedical sciences. Blackwell, Oxford, pp 133.1–133.36

    Google Scholar 

  • Hu J-G, Kitagawa T (1990) Studies on the optimal immunization schedule of experimental animals. VI. Antigen dose-response of aluminium hydroxide-aided immunization and booster effect under low antigen dose. Chem Pharm Bull 38:2775–2779

    PubMed  CAS  Google Scholar 

  • Hu J-G, Yokoyama T, Kitagawa T (1990a) Studies on the optimal immunization schedule of experimental animals. IV. The optimal age and sex of mice, and the influence of booster injections. Chem Pharm Bull 38:448–451

    PubMed  CAS  Google Scholar 

  • Hu J-G, Yokoyama T, Kitagawa T (1990b) Studies on the optimal immunization schedule of experimental animals. V. The effects of the route of injection, the content of Mycobacteria in Freund’s adjuvant and the emulsifying antigen. Chem Pharm Bull 38:1961–1965

    PubMed  CAS  Google Scholar 

  • Mirza IH, Wilkin TJ, Cantarini M, Moore K (1987) A comparison of spleen and lymph node cells as fusion partners for the raising of monoclonal antibodies after different routes of immunisation. J Immunol Methods 105:235–243

    Article  PubMed  CAS  Google Scholar 

  • Nilsson BO, Grönvik KO, Svalander PC (1983) Experiments with immunization of mice with blastocysts by an intrasplenic route. Ups J Med Sci 88:151–153

    Article  PubMed  CAS  Google Scholar 

  • Nilsson BO, Svalander PC, Larsson A (1987) Immunization of mice and rabbits by intrasplenic deposition of nanogram quantities of protein attached to Sepharose beads or nitrocellulose paper strips. J Immunol Methods 99:67–75

    Article  PubMed  CAS  Google Scholar 

  • Rathjen DA, Underwood PA, Whalley JM (1986) An evaluation of some in vivo immunization strategies for the production of monoclonal antibodies to insulin and ACTH. J Biol Stand 14:1–14

    Article  PubMed  CAS  Google Scholar 

  • Spitz M (1986) “Single shot” intrasplenic immunization for the production of monoclonal antibodies. Methods Enzymol 121:33–41

    Article  PubMed  CAS  Google Scholar 

  • Spitz M, Spitz L, Thorpe R, Eugui E (1984) Intrasplenic primary immunization for the production of monoclonal antibodies. J Immunol Methods 70:39–43

    Article  PubMed  CAS  Google Scholar 

  • Stähli C, Staehelin T, Miggiano V (1983) Spleen cell analysis and optimal immunization for high-frequency production of specific hybridomas. Methods Enzymol 92:26–36

    Article  PubMed  Google Scholar 

  • Stähli C, Staehelin T, Miggiano V, Schmidt J, Häring P (1980) High frequencies of antigen-specific hybridomas: dependence on immunization parameters and prediction by spleen cell analysis. J Immunol Methods 32:297–304

    Article  PubMed  Google Scholar 

  • Trucco MM, Stocher IW, Cepellini R (1978) Monoclonal antibodies against human lymphocyte antigens. Nature 273:666–668

    Article  PubMed  CAS  Google Scholar 

  • Boumsell L, Bernard A (1980) High efficiency of Biozzi’s high responder mouse strain in the generation of antibody secreting hybridomas. J Immunol Methods 38:225–229

    Article  PubMed  CAS  Google Scholar 

  • Frosch M, Görgen I, Boulnois GT, Timmis KN, Bitter-Suermann D (1985) NZB mouse system for production of monoclonal antibodies to weat bacterial antigens: isolation of an IgG antibody to the polysaccharide capsules of Escherichia coli K1 and group B neningococci. Proc Natl Acad Sci USA 82:1194–1198

    Article  PubMed  CAS  Google Scholar 

  • Ohno T (1986) Monoclonal antibody. European Patent Application 0179576

    Google Scholar 

References

  • Alving CR (1991) Liposomes as carriers of antigens and adjuvants. J Immunol Methods 140:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bessler WG, Hauschildt S (1987) Bakterielle Lipopeptide als Immunadjuvantien. Forum Mikrobiol 4:106–111

    Google Scholar 

  • Böltz T, Hummel R-P, Tröger W, Rübsamen-Waigmann H, Biesert L, Müller-Lantzsch N, Koch P, Bessler W, Jung G (1988) Distinction between HIV-1 and HIV-2 infection using novel synthetic lipopeptide conjugates as antigens in enzyme immunoassays. J Virol Methods 22:173–182

    Article  PubMed  Google Scholar 

  • Davis D, Davis A, Gregoriadis G (1987) Liposomes as adjuvants with immunopurified tetanus toxoid: the immune response. Immunol Lett 14:341–348

    Article  PubMed  CAS  Google Scholar 

  • Gurvich AE, Korukova A (1986) Induction of abundant antibody formation with a proteincellulose complex in mice. J Immunol Methods 87:161–167

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies. A laboratory manual. Cold Spring Harbor Laboratory, pp 61–71

    Google Scholar 

  • Herbert WJ, Kristensen F (1986) Laboratory animal techniques for immunology. In: Weir DM, Herzenberg LA, Blackwell C, Herzenberg LA (eds) Handbook of experimental immunology: applications of immunological methods in biomedical sciences. Blackwell, Oxford, pp 133.1–133.36

    Google Scholar 

  • Hu J-G, Kitagawa T (1990) Studies on the optimal immunization schedule of experimental animals. VI. Antigen dose-response of aluminium hydroxide-aided immunization and booster effect under low antigen dose. Chem Pharm Bull 38:2775–2779

    PubMed  CAS  Google Scholar 

  • Kenney JS, Hughes BW, Masada MP, Allison AC (1989) Influence of adjuvants on the quantity, affinity, isotype and epitope specificity of murine antibodies. J Immunol Methods 121:157–166

    Article  PubMed  CAS  Google Scholar 

  • Kohn J, Niemi SM, Albert EC, Murphy JC, Langer R, Fox JG (1986) Single-step immunization using a controlled release, biogradable polymer with sustained adjuvant activity. J Immunol Methods 95:31–38

    Article  PubMed  CAS  Google Scholar 

  • Knudsen KA (1985) Proteins transferred to nitrocellulose for use as immunogens. Anal Biochem 147:285–288

    Article  PubMed  CAS  Google Scholar 

  • Matthew WD, Patterson PH (1983) The production of a monoclonal antibody that blocks the action of a neurite outgrowth-promoting factor. Cold Spring Harbor Symp 48:625–631

    Google Scholar 

  • Nilsson BO, Svalander PC, Larsson A (1987) Immunization of mice and rabbits by intrasplenic deposition of nanogram quantities of protein attached to Sepharose beads or nitrocellulose paper strips. J Immunol Methods 99:67–75

    Article  PubMed  CAS  Google Scholar 

  • Schröder U, Stahl A (1984) Crystallized dextran nanospheres with entrapped antigen and their, use as adjuvants. J Immunol Methods 70:127–132

    Article  PubMed  Google Scholar 

  • Van der Heijden PJ, Bokhout BA, Bianchi ATJ, Schölten JW, Stok W (1986) Separate application of adjuvant and antigen: the effect of a water-in-oil emulsion on the splenic plaqueforming cell response to sheep red blood cells in mice. Immunobiology 171:143–154

    Article  PubMed  Google Scholar 

  • Wiesmüller K-H, Jung G, Gillesen D, Loffi C, Bessler WG, Böltz T (1991) The antibody response in BALB/c mice to the Plasmodium falciparum circumsporozoite repetitive epitope covalently coupled to synthetic lipopeptide adjuvant. Immunology 72:109–113

    PubMed  Google Scholar 

References

  • Dresser DW (1986) Immunization of experimental animals. In: Weir DM (ed) Handbook of experimental immunology. Blackwell, Oxford, pp 8.1–8.21

    Google Scholar 

  • Golumbeski GS, Dimond RL (1986) The use of tolerization in the production of monoclonal antibodies against minor antigenic determinants. Anal Biochem 154:373–381

    Article  PubMed  CAS  Google Scholar 

  • Hanai N, Shitara K, Yoshida H (1986) Generation of monoclonal antibodies against human lung squamous cell carcinoma and adenocarcinoma using mice rendered tolerant to normal lung. Cancer Res 46:4438–4443

    PubMed  CAS  Google Scholar 

  • Kagnoff MF (1980) Effects of antigen feeding on intestinal and systemic immune responses. IV. Similarity between the suppressor factor in mice after erythrocyte lysate injection and erythrocyte feeding. Gastroenterology 79:54–61

    PubMed  CAS  Google Scholar 

  • Ngan J, Kind L (1978) Suppressor T-cells for IgE and IgG in Peyer’s patches of mice made tolerant by the oral administration of ovalbumin. J Immunol 120:861–865

    PubMed  CAS  Google Scholar 

  • Richman LK, Chiller JM, Brown WR, Hanson DG, Vaz N (1978) Enterically induced immunological tolerance. I. Induction of suppressor T-lymphocytes by intragastric administration of soluble proteins. J Immunol 121:2429–2934

    PubMed  CAS  Google Scholar 

  • Quintans J, Quan ZS (1983) Idiotype shifts caused by neonatal tolerance to phosphochoryl-choline. J Immunol 130:590–595

    PubMed  CAS  Google Scholar 

  • Weigle WO (1973) Immunological unresponsiveness. Adv Immunol 16:61–122

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Hanai N (1985) A process for preparing hybridoma cells which produce tumour specific monoclonal antibodies. European Patent Application 0156578

    Google Scholar 

References

  • Livingston PO, Jones M, Deleo AB, Oettgen HF, Old LJ (1985) The serologic response to Meth A sarcoma vaccines after cyclophosphamide treatment is additionally increased by various adjuvants. J Immunol 135:1505–1509

    PubMed  CAS  Google Scholar 

  • Matthew WD, Sandrock AW (1987) Cyclophosphamide treatment used to manipulate the immune response for the production of monoclonal antibodies. J Immunol Methods 100:73–82

    Article  PubMed  CAS  Google Scholar 

References

  • Benkirane MM, Bon D, Cordeil M, Delori P, Delaage MA (1987) Immunization with immune complexes: characterization of monoclonal antibodies against a TSH-antibody complex. Mol Immunol 24:1309–1315

    Article  PubMed  CAS  Google Scholar 

  • Thalhammer J, Freund J (1984) Cascade immunization: a method of obtaining polyspecific antisera against crude fractions of antigens. J Immunol Methods 66:245–251

    Article  Google Scholar 

  • Ziegler-Heitbrock HWL, Reiter C, Trenkmann J, Futterer A, Riethmüller G (1986) Protection of mice against tetanus toxin by combination of two human monoclonal antibodies recognizing distinct epitopes on the toxin molecule. Hybridoma 5:21–31

    Article  PubMed  CAS  Google Scholar 

References

  • Ahlstedt S, Bjorksten B (1983) Specific antibody responses in rats and mice after daily immunization without adjuvant. Int Arch Allergy Appl Immunol 71:293–299

    Article  PubMed  CAS  Google Scholar 

  • Colwell DE, Michalek SM, McGhee JR (1986) Method for generating a high frequency of hybridomas producing monoclonal IgA antibodies. Methods Enzymol 121:42–51

    Article  PubMed  CAS  Google Scholar 

  • Goding JW (1983) Monoclonal antibodies: principles and practice. Academic Press, London Metzger DW, Walker WS (1988) In vivo activation of quiescent B cells by antiimmunoglobulin. J Immunol Methods 107:47–52

    Google Scholar 

  • Scott MT, Bahr G, Moddaber F, Afchain D, Chedid L (1984) Adjuvant requirements for protective immunization of mice using a Trypanosoma cruzi 90K cell surface glycoprotein. Int Arch Allergy Appl Immunol 74:373–377

    Article  PubMed  CAS  Google Scholar 

  • Tung AS (1983) Production of large amounts of antibodies, nonspecific immunoglobulins, and other serum proteins in ascitic fluid of individual mice and guinea pigs. Methods Enzymol 93:12–23

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumgarten, H., Schulze, M., Peters, J.H., Hebell, T. (1992). Immunization. In: Peters, J.H., Baumgarten, H. (eds) Monoclonal Antibodies. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74532-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74532-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74534-8

  • Online ISBN: 978-3-642-74532-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics