Skip to main content

Demonstration of Monoclonal Antibodies

  • Chapter

Part of the book series: Springer Laboratory ((SLM))

Abstract

The answer to this question is trivial, but to the point: one can only find the correct antibody if the correct test system is used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumgarten H, Werfel T, Götze O (1983) Epitope analysis of human factor B and its physiological fragments Ba and Bb with the use of monoclonal antibodies. Immunobiology 165:238

    Google Scholar 

  • Fazekas de St Groth S, Scheidegger D (1980) Production of monoclonal antibodies: strategy and tactics. J Immunol Methods 35:1–21

    Article  Google Scholar 

Further Reading

  • Bankert RB (1983) Rapid screening and replica plating of hybridomas for the production and characterization of monoclonal antibodies. Methods Enzymol 92:182–195

    Article  PubMed  CAS  Google Scholar 

  • Campbell AM (1984) Monoclonal antibody technology. In: Burdon RH, van Knippenberg PH (eds) Laboratory techniques in biochemistry and molecular biology vol 13. Elsevier, North Holland

    Google Scholar 

  • Jacobson RA, Sato JD, Sato GH (1987) Biological screening of monoclonal antibodies. Biochem Biophys Res Commun 149:309–213

    Article  PubMed  CAS  Google Scholar 

  • Kemeny DM, Challacombe SJ (eds) ELISA and other solid phase immunoassays. Wiley, London

    Google Scholar 

  • Kenny GE, Dunsmoor CL (1983) Principles, problems, and strategies in the use of antigenic mixtures for the enzyme-linked immuno-sorbent assay. J Clin Microbiol 17:655–665

    PubMed  CAS  Google Scholar 

  • Kurstak E (1985) Progress in enzyme immunoassays: production of reagents, experimental design, and interpretation. Bull H O 63:793–811

    CAS  Google Scholar 

  • Langone JJ (1982) Use of protein a in quantitative immunochemical analysis of antigens and antibodies. J Immunol Methods 51:3–22

    Article  PubMed  CAS  Google Scholar 

  • Langone JJ, Van Vunakis H (eds) (1983) Immunochemical techniques. Part E Monoclonal antibodies and general immunoassay methods. Methods in Enzymology 92. Academic Press, New York

    Google Scholar 

  • Legrain P, Juy D, Buttin G (1983) Rosette-forming cell assay for detection of antibodysynthesizing hybridomas. Methods Enzymol 92:175–181

    Article  PubMed  CAS  Google Scholar 

  • Maggio ET (1980) Enzyme-immunoassay. CRC Press, Boca Raton

    Google Scholar 

  • Micheel B, Karsten U, Fiebach H (1981) A solid-phase immuno-fluorescence assay (SIFA) for screening antigen-specific hybridomas. J Immunol Methods 46:41–46

    Article  PubMed  CAS  Google Scholar 

  • Miyai K (1985) Advances in nonisotopic immunoassay. Adv Clin Chem 24

    Google Scholar 

  • Tijssen P (1985) Practice and theory of enzyme immunoassays. In: Burdon RH, van Knippenberg PH (eds). Laboratory techniques in biochemistry and molecular biology, vol 15. Elsevier, Amsterdam

    Google Scholar 

  • Yolken RH (1982) Enzyme immunoassays for the detection of infectious antigens of infectious antigens in body fluids: current limitations and future prospects. Rev Inf Dis 4:35–68

    Article  CAS  Google Scholar 

References

  • Al Moudallal Z, Altschuh D, Briand JP, Van Regenmortel MHV (1984) Comparative sensitivity of different ELISA procedures for detecting monoclonal antibodies. J Immunol Methods 68:35–43

    Article  Google Scholar 

  • Conradie JD, Gorender M, Visser L (1983) ELISA solid phase: partial denaturation of coating antibody yields a more efficient solid phase. J Immunol Methods 59:289–299

    Article  PubMed  CAS  Google Scholar 

  • Oliver DG, Saners AH, Hogg RD, Woods-Hellmann I (1981) Thermal gradients in microtitration plates, effects of enzyme-linked immunoassay. J Immunol Methods 42:195–201

    Article  PubMed  CAS  Google Scholar 

  • Tiefenauer LX, Bodmer DM, Frei W, Andres WY (1989) Prevention of bridge binding in immunoassays: a general estradiol tracer structure. J Steroid Biochem 32:251–257

    Article  PubMed  CAS  Google Scholar 

  • Ullman FE, Maggio ET (1980) Principles of homogenous enzyme-immunoassay. In: Maggio ET (ed) Enzyme-immunoassay. CRC Press, Boca Raton, pp 105–134

    Google Scholar 

Further Reading

  • Ansari AA, Hattikudur NS, Joshi SR, Medeira MA (1985) ELISA Solid phase: stability and binding characteristics. J Immunol Methods 84:117–124

    Article  PubMed  CAS  Google Scholar 

  • Butler JE, Peterman JH, Suter M, Dierks SE (1987) The immunochemistry of solid-phase sandwich enzyme-linked immunosorbent assays. Fed Proc 46:2548–2556

    PubMed  CAS  Google Scholar 

  • Butler JE, Spradling JE, Suter M, Dierks SE, Heyermann H, Peterman JH (1986) The immunochemistry of sandwich ELISAs I. The binding of characteristics of immunoglobulins to monoclonal and polyclonal antibodies adsorbed on plastic and their detection by symmetrical and asymmetrical antibody-enzyme conjugates. Mol Immunol 23:971–982

    Article  PubMed  CAS  Google Scholar 

  • Brennand DM, Danson MJ, Hough DW (1986) A comparison of ELISA screening methods for the production of monoclonal antibodies against soluble protein antigens. J Immunol Methods 93:9–14

    Article  PubMed  CAS  Google Scholar 

  • Douillard JY, Hoffman T (1983) Enzyme-linked immunosorbent assay for screening monoclonal antibody production using enzyme-labeled second antibody. Methods Enzymol 92:168–174

    Article  PubMed  CAS  Google Scholar 

  • Geoghegan WD, Struve MF, Jordan RE (1983) Adaptation of the Ngo-Lenhoff peroxidase assay for solid phase ELISA. J Immunol Methods 60:329–339

    Article  Google Scholar 

  • Hammack S, Searle MA, Panush RS (1985) A simplified enzyme-linked immunosorbent assay. Advantages of pre-coated microtiter plates. J Immunol Methods 84:381–382

    Article  PubMed  CAS  Google Scholar 

  • Kemp HA, Morgan RA (1986) Studies on the detrimental effects of bivalent binding in a microtitration plate ELISA and possible remedies. J Immunol Methods 94:65–72

    Article  PubMed  CAS  Google Scholar 

  • Kendall C, Ionescu-Matiu, Dreesman GR (1983) Utilization of the biotin/avidin system to amplify the sensitivity of the enzyme-linked-immunosorbent assay (ELISA). J Immunol Methods 56:329–339

    Article  PubMed  CAS  Google Scholar 

  • Kenna JG, Major GN, Williams RS (1985) Methods for reducing non-specific antibody binding in enzyme-linked immunosorbent assay. J Immunol Methods 85:409–419

    Article  PubMed  CAS  Google Scholar 

  • Kenny GE, Dunsmoor CL (1983) Principles, problems, and strategies in the use of antigenic mixtures for the enzyme-linked immuno-sorbent assay. J Clin Microbiol 17:655–665

    PubMed  CAS  Google Scholar 

  • Lew AM (1984) The effect of epitope density and antibody affinity on the ELISA as analysed by monoclonal antibodies. J Immunol Methods 72:171–176

    Article  PubMed  CAS  Google Scholar 

  • Lovborg U (1984) Guide to solid phase immuno assays. NUNC, Roskilde

    Google Scholar 

  • Mierendorf RC, Dimond RL (1983) Functional heterogeneity of monoclonal antibodies obtained using different screening assay. Anal Biochem 135:221–229

    Article  PubMed  CAS  Google Scholar 

  • Munoz C, Nieto A, Gaya A, Martinez J, Vives J (1986) New experimental criteria for optimization of solid-phase antigen concentration and stability in ELISA. J Immunol Methods 94:137–144

    Article  PubMed  CAS  Google Scholar 

  • Oellerich M (1984) Enzyme-immunoassay: a review. J Clin Chem Clin Biochem 22:895–904

    PubMed  CAS  Google Scholar 

  • Sorensen K, Brodbeck U (1986) Assessment of coating-efficiency in ELISA plates by direct protein determination. J Immunol Methods 95:291–293

    Article  PubMed  CAS  Google Scholar 

  • Vaidya HC, Dietzler DN, Ladenson JH (1985) Inadequacy of traditional ELISA for screening hybridoma supernatants for murine monoclonal antibodies. Hybridoma 4:271–276

    Article  PubMed  CAS  Google Scholar 

  • Vogt RF, Phillips DL, Henderson LO, Whitfield W, Spierto FW (1987) Quantitative differences among various proteins and blocking agents for ELISA microtiter plates. J Immunol Methods 101:43–50

    Article  PubMed  CAS  Google Scholar 

  • Vos Q, Klasen EA, Jaaijman JJ (1987) The effect of divalent and univalent binding on antibody titration curves in solid-phase ELISA. J Immunol Methods 103:47–54

    Article  PubMed  CAS  Google Scholar 

  • Yolken RH (1982) Enzyme immunoassays for the detection of infectious antigens in body fluids: Current limitations and future prospects. Rev Inf Dis 4:35–67

    Article  CAS  Google Scholar 

References

  • Gallati H, Brodbeck H (1982) Peroxidase aus Meerrettich: Reagenz zum Abstoppen der katalytischen Umsetzung der Substrate H2O2 und 2,2′-azino-di(ethyl-benz-thiazolinsul-fonsäure-(6)) (ABTS). J Clin Biochem 20:757–760

    CAS  Google Scholar 

  • La Belle M (1987) Computer-assisted collection and analysis of enzyme-linked immunosorbent assay data. J Immunol Methods 102:251–258

    Article  PubMed  Google Scholar 

  • Oliver DG, Saners AH, Hogg RD, Woods-Hellmann I (1981) Thermal gradients in microtitration plates, effects on enzyme-linked immunoassay. J Immunol Methods 42:195–201

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Benjamin DC, Berzofsky JA, East IJ et al. (1984) The antigenic structure of proteins: a reappraisal. Annu Rev Immunol 2:67–101

    Article  PubMed  CAS  Google Scholar 

  • Porstmann B, Porstmann T, Nugel E (1981) Comparison of chromogens for the determination of horse radish peroxidase. J Clin Chem Clin Biochem 19:435–439

    PubMed  CAS  Google Scholar 

  • Raggatt PR (1989) Duplicates or singletons? — an analysis of the need for replication in immunoassay and a computer program to calculate the distribution of outliers, error rate and the precision profile from assay duplicates. Ann Clin Biochem 26:26–37

    PubMed  Google Scholar 

  • Yolken RH (1982) Enzyme immunoassays for the detection of infectious antigens in body fluids: current imitations and future prospects. Rev Inf 4:35–65

    Article  CAS  Google Scholar 

  • Zaitsu K, Ohkura Y (1980) New fluorogenic substrates for horse-radish peroxidase: rapid and sensitive assays for hydrogen peroxide and peroxidase. Anal Biochem 109:109–113

    Article  PubMed  CAS  Google Scholar 

References

  • Baumgarten H (1985) A simple assay for the determination of cellular protein. J Immunol Methods 82:25–37

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Rago R, Mitchen J, Wilding G (1990) DNA fluorometric assay in 96-well tissue culture plates using Hoechst 33258 after cell lysis by freezing in distilled water. Anal Biochem 191:31–34

    Article  PubMed  CAS  Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) A rapid, sensitive and versatile assay for protein using Coomassie brilliant Blue G-20. Anal Biochem 79:544–552

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Engvall E (1980) Enzyme immunoassay ELISA and EMIT. Methods Enzymol 70:419–439

    Article  PubMed  CAS  Google Scholar 

  • Fleming JO, Pen LB (1988) Measurement of the concentration of murine IgG monoclonal antibody in hybridoma supernatants and ascites in absolute units by sensitive and reliable enzyme-linked immunosorbent assay (ELISA). J Immunol Methods 110:11–18

    Article  PubMed  CAS  Google Scholar 

  • Macy E, Kemeny M, Saxon A (1988) Enhanced ELISA: how to measure less than 10 picograms of a specific protein (immunoglobulin) in less than 8 hours. FASEB J 2:3003–3009

    PubMed  CAS  Google Scholar 

References

  • Bayer EE, Wilchek M (1980) The use of the avidin-biotin complex as a tool in molecular biology. Methods Biochem Anal 26:1–46

    Article  PubMed  CAS  Google Scholar 

  • Kendall C, Ionescu-Matiu I, Dreesman GR (1983) Utilization of the biotin/avidin system to amplify the sensitivity of the enzyme-linked immunosorbent assay (ELISA). J Immunol Methods 56:329–339

    Article  PubMed  CAS  Google Scholar 

  • Macy E, Kemeny M, Saxon A (1988) Enhanced ELISA: how to measure less than 10 picograms of a specific protein (immunoglobulin) in less than 8 hours. FASEB J 2:3003–3009

    PubMed  CAS  Google Scholar 

  • Schulze M, Götze O (1984) A sensitive quantitative enzyme-immuno-assay for human C5a using a monoclonal antibody. Immunobiology 168: 111

    Google Scholar 

  • Yolken RH (1982) Enzyme immunoassay for the detection of infectious antigens in body fluids: current limitations and future prospects. Ref Inf Dis 4:35–68

    Article  CAS  Google Scholar 

References

  • Adams RLP (1980) Cell culture for biochemists. Elsevier, Amsterdam, pp 260–262

    Google Scholar 

  • Brandtzaeg P (1982) Tissue preparation methods for immunocytochemistry. In: Bullock GR, Petrusz P (eds) Techniques in immunocytochemistry. Academic Press, London, pp 2–75

    Google Scholar 

  • Ewijk W van, Soest PL van, Verkerk A, Jongkind JF (1984) Loss of antibody binding to prefixed cells: fixation parameters for immunocytochemistry. Histochem J 16:179–193

    Article  PubMed  Google Scholar 

  • Farr AG, Nakane PK (1981) Immunohistochemistry with enzyme-labeled antibodies: a brief review. J Immunol Methods 47:129–144

    Article  PubMed  CAS  Google Scholar 

  • Festin R, Bjoerklund B, Toettermann TH (1987) Detection of triple antibody-binding lymphocytes in standard single laser flow cytometry using colloidal gold, fluorescein and phycoerythrin as labels. J Immunol Methods 101:23–28

    Article  PubMed  CAS  Google Scholar 

  • Heyderman E (1979) Immunoperoxidase technique in histopathology: applications, methods, and controls. J Clin Pathol 32:971–978

    Article  PubMed  CAS  Google Scholar 

  • Horisberger M (1979) Evaluation of colloidal gold as a cytochemical marker for transmission and scanning electron microscopy. Biol Cell 36:253–258

    CAS  Google Scholar 

  • Houser CR, Barber RP, Crawford GD, Matthews DA, Phelps PE, Salvaterra PM, Vaughn JE (1984) Species-specific second antibodies reduce spurious staining in immunocytochemistry. J Histochem 32:395–402

    CAS  Google Scholar 

  • Janckila AJ, Yam LT, Li C-Y (1985) Immunoalkaline phosphatase cytochemistry: technical considerations of endogenous phosphatase activity. Am J Clin Pathol 84:476–480

    PubMed  CAS  Google Scholar 

  • Janossi G, Amlot P (1987) Immunofluorescence and immunohistochemistry. In: Klaus GGB (ed) Lymphocytes. A practical approach. IRL Press, Oxford, pp 67–107

    Google Scholar 

  • Johnson GD, Holborow EJ (1986) Preparation and use of fluoprochrome conjugates. In: Weir DM, Herzenberg LA, Blackwell C (Eds): Handbook of experimental immunology Vol 1. Immunochemistry. Blackwell, Oxford, pp 28.1–28.21

    Google Scholar 

  • Karlsson-Parra A, Forsum U, Klareskog L, Sjöberg O (1983) A simple immunoenzyme batch staining method for the enumeration of peripheral human T lymphocyte subsets. J Immunol Methods 64:85–90

    Article  PubMed  CAS  Google Scholar 

  • Kelly J, Wheland CA, Weir DG, Feighery C (1987) Removal of endogenous peroxidase activity from cryostat sections for immunoperoxidase activity visualization of monoclonal antibodies. J Immunol Methods 96:127–132

    Article  PubMed  CAS  Google Scholar 

  • Köller U, Stockinger H, Majdic O, Bettelheim P, Knapp W (1986) A rapid and simple immunoperoxidase staining procedure for blood and bone marrow samples. J Immunol Methods 86:75–81

    Article  PubMed  Google Scholar 

  • Larsson L-I (1988) Immunocytochemistry: theory and practice. CRC Press, Boca Raton

    Google Scholar 

  • Lifson JD, Sasaki DT, Engleman EG (1986) Utility of formaldehyde fixation for flow cytometry and inactivation of the AIDS associated retrovirus. J Immunol Methods 86:143–149

    Article  PubMed  CAS  Google Scholar 

  • Lubeck MD, Steplewski Z, Baglia F, Klein MH, Dorrington KJ, Koprowski H (1985) The interaction of murine IGG subclass proteins with human monocyte Fc receptor. J Immunol 135:1299–1304

    PubMed  CAS  Google Scholar 

  • Malorny U, Bildau H, Sorg C (1988) Efficient inhibition of endogenous peroxidase without antigen denaturation in immunohistochemistry. J Immunol Methods 111: 101–107

    Article  PubMed  CAS  Google Scholar 

  • McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative: a new fixative for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Mosmann TR, Gallatin M, Longnecker BM (1980) Alteration of apparent specificity of monoclonal (hybridoma) antibodies reconizing polymorphic histocompatibility and blood group determinants. J Immunol 125:1152–1156

    PubMed  CAS  Google Scholar 

  • Nairn RC (1976) Fluorescent protein tracing. Churchill Livingstone, New York

    Google Scholar 

  • Nielsen B, Borup-Christensen P, Erb K, Jensenius JC, Husby S (1987) A method for the blocking of endogenous immunoglobulin on frozen tissue sections in the screening of human hybridoma antibody in culture supernatants. Hybridoma 6:103–109

    Article  PubMed  CAS  Google Scholar 

  • Pearse AGE (1980) Histochemistry, theoretical and applied. Preparation and optical technology. Churchill Livingstone, London

    Google Scholar 

  • Polak JM, Van Noorden S (1986) Immunocytochemistry. Modern methods and applications. Wright, Bristol

    Google Scholar 

  • Ponder BA, Wilkinson MW (1981) Inhibition of endogenous tissue alkaline phosphatase conjugates in immunohistochemistry. J Histochem Cytochem 29:981–984

    Article  PubMed  CAS  Google Scholar 

  • Preud’homme JL (1984) Lymphocyte markers: diagnostic help or costly vogue? Diagn Immunol 2:242–248

    PubMed  Google Scholar 

  • Reisner HM, Wick MR (1988) Theoretical and technical considerations for the use of monoclonal antibodies in diagnostic immunohistochemistry. In: Wick MR, Siegal GP (eds) Monoclonal antibodies in diagnostic immunohistochemistry. Marcel Dekker, New York, pp 1–49

    Google Scholar 

  • Sainte-Marie G (1962) A paraffin embedding technique for studies employing immunofluorescence. J Histochem Cytochem 10:250–256

    Article  Google Scholar 

  • Schuit HRE, Hijman W, Asma GEM (1980) Identification of mononuclear cells in human blood. I. Qualitative and quantitative data on surface markers after formaldehyde fixation of the cells. Clin Exp Immunol 41:559–566

    PubMed  CAS  Google Scholar 

  • Stein H, Gatter KC, Herget A, Mason DY (1984) Freeze-dried paraffin-embedded human tissue for antigen with monoclonal antibodies. Lancet July 14:71–73

    Article  Google Scholar 

  • Thomas NT, Bennett R, Jones CN (1987) A comparison of immunocytochemical staining enhancement methods using a rapid microtitre immunocytochemistry assay (MIA). J Immunol Methods 104:201–207

    Article  PubMed  CAS  Google Scholar 

  • Truneh A, Machy P (1987) Detection of very low receptor numbers on cells by flow cytometry using a sensitive staining method. Cytometry 8:562–567

    Article  PubMed  CAS  Google Scholar 

  • Willingham MC, Yamada SS (1979) Development of a new primary fixative for electron microscopic immunohistochemical localization of intracellular antigens in cultured cells. J Histochem 27:947–960

    CAS  Google Scholar 

  • Zola H, Moore HA, Hunter IK, Bradley J (1984) Analysis of chemical and biochemical properties of membrane molecules in situ by analytical flow cytometry with monoclonal antibodies. J Immunol Methods 74:65–77

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Edwards BS, Shopp GM (1989) Efficient use of monoclonal antibodies for immunofluorescence. Cytometry 10:94–97

    Article  PubMed  CAS  Google Scholar 

  • Krenik KD, Kephart GM, Offord KP, Dunnette SL, Gleich GJ (1989) Comparison of antifading agents used in immunofluorescence. J Immunol Methods 117:91–97

    Article  PubMed  CAS  Google Scholar 

  • van Noorden S (1986) Tissue preparation and immunostaining techniques for light microscopy. In: Polak JM, van Noorden S (eds) Immunocytochemistry. Modern methods and applications. Wright, Bristol, pp 26–53

    Google Scholar 

  • Willingham MC, Pastan I (1985) An atlas of immunofluorescence in cultured cells. Academic Press, Orlando, pp 5–7

    Google Scholar 

References

  • Platt JL, Michael AF (1983) Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine. J Histochem Cytochem 31:840–842

    Article  PubMed  CAS  Google Scholar 

  • Wick G, Baudner S, Herzog F (1978) Immunofluorescence. Medizinische Verlagsgesellschaft, Marburg/L.

    Google Scholar 

  • Johnstone A, Thorpe R (1982) Immunochemistry in practice. Blackwell, London

    Google Scholar 

References

  • Platt JL, Michael AF (1983) Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine. J Histochem Cytochem 31 (6): 840–842

    Article  PubMed  CAS  Google Scholar 

  • Pryzwansky KB (1982) Applications of double-label immunofluorescence. In: Bulbock GR, Petrusz P (eds) Techniques in immunocytochemistry, vol 1. Academic Press, New York, pp 77–90

    Google Scholar 

  • Wang K, Feramisco JR, Ash JF (1982) Fluorescent localization of contractile proteins in tissue culture cells. Methods Enzymol 85:514–553

    Article  PubMed  CAS  Google Scholar 

  • Wick G, Baudner S, Herzog F (1978) Immunofluorescence. Medizinische Verlagsgesellschaft, Marburg/L.

    Google Scholar 

References

  • Bayer EE, Wilchek M (1980) The use of the avidin-biotin complex as a tool in molecular biology. Methods Biochem Anal 26:1–46

    Article  PubMed  CAS  Google Scholar 

  • Cordell JL, Falini B, Erber WN, Ghosh AK, Abdulaziz Z, Mac Donald S, Pulford KAF, Stein H, Mason DY (1984) Immunoenzymatic labelling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 32 (2): 219–229

    Article  PubMed  CAS  Google Scholar 

  • Landsdorp PM, van der Kwast TH, De Boer M, Zeijlmaker WP (1984) Stepwise amplified immunoperoxidase (PAP) staining. I. Cellular morphology in relation to membrane markers. J Histochem Cytochem 32:172–178

    Article  Google Scholar 

  • Mason DY (1985) Immunocytochemical labelling of monoclonal antibodies by the APAAP immunoalkaline phosphatase technique. In: Bullock GR, Petrusz P (ed) Techniques in immunocytochemistry, vol 3. Academic Press, London, pp 25–42

    Google Scholar 

  • Petrali JP, Hinton DM, Moriarty GC, Sternberger LA (1974) The unlabeled antibody enzyme method of immunocytochemistry. J Histochem 22:782–801

    CAS  Google Scholar 

  • Sternberger LA, Hardy PW, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. J Histochem Cytochem 18:315–333

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Bullock GR, Petrusz P (1982) Techniques in immunocytochemistry, vol I–III. Academic Press, London

    Google Scholar 

  • Holzmann B, Johnson JP (1983) A beta-galactosidase linked immunoassay for the analysis of antigens on individual cells. J Immunol Methods 60:359–367

    Article  PubMed  CAS  Google Scholar 

  • Stein H, Gatter KC, Heryet A, Mason DY (1984) Freeze-dried paraffin-embedded human tissue for antigen labelling with monoclonal antibodies. Lancet July 14:71–73

    Article  Google Scholar 

  • Steinmetz T, Pfreundschuh MG (1987) Producton of monoclonal antibodies against glucose oxidase, alkaline phosphatase and peroxidase. Their application in a highly sensitive antigen spot microassay. J Immunol Methods 101:251–259

    Article  PubMed  CAS  Google Scholar 

References

  • Farr AG, Nakane PK (1981) Immunohistochemistry with enzyme-labeled antibodies: a brief review. J Immunol Methods 47:129–144

    Article  PubMed  CAS  Google Scholar 

  • Heyderman E (1979) Immunoperoxidase technique in histopathology: applications, methods, and controls. J Clin Pathol 32:971–978

    Article  PubMed  CAS  Google Scholar 

  • Kelly J, Wheland CA, Weir DG, Feighery C (1987) Removal of endogenous peroxidase activity from cryostat sections for immunoperoxidase activity visualization of monoclonal antibodies. J Immunol Methods 96:127–132

    Article  PubMed  CAS  Google Scholar 

  • Köller U, Stockinger H, Majdic O, Bettelheim P, Knapp W (1986) A rapid and simple immunoperoxidase staining procedure for blood and bone marrow samples. J Immunol Methods 86:75–81

    Article  PubMed  Google Scholar 

  • Malorny U, Bildau H, Sorg C (1988) Efficient inhibition of endogenous peroxidase without antigen denaturation in immuhistochemistry. J Immunol Methods 111: 101–107

    Article  PubMed  CAS  Google Scholar 

  • Straus W (1972) Phenyl hydrazine as inhibitor of horseradish peroxidase for use in immunoperoxidase procedures. J Histochem Cytochem 20:949–951

    Article  PubMed  CAS  Google Scholar 

  • Streefkerk JG (1972) Inhibition of erythrocyte pseudoperoxidase activity by treatment with hydrogen peroxidase following methanol. J Histochem Cytochem 20:829–831

    Article  PubMed  CAS  Google Scholar 

Reference

  • Petrali JP, Hinton DM, Mariarty GC, Sternberger LA (1974) The unlabeled antibody enzyme method of immunocytochemistry. J Histochem Cytochem 22:782–801

    Article  PubMed  CAS  Google Scholar 

References

  • Childs GU, Unabia G (1982) Application of the avidin-biotin-peroxidase complex (ABC) method to the light localization of pituitary hormones. J Histochem Cytochem 30:713–716

    Article  PubMed  CAS  Google Scholar 

  • Frigg M, Torhorst J (1982) Autoradiographic localization of 3H-biotin in chick tissues. Int J Vitam Nutr Res 52:417–422

    PubMed  CAS  Google Scholar 

  • Guesdon JL, Ternynck T, Avrameas S (1979) The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Hsu SM, Raine L (1981) Protein A, avidin and biotin in immunocytochemistry. J Histochem Cytochem 29:1349–1353

    Article  PubMed  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. J Histochem Cytochem 29:577–580

    Article  PubMed  CAS  Google Scholar 

  • Wood GS, Warnke R (1981) Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. J Histochem Cytochem 29:1196–1204

    Article  PubMed  CAS  Google Scholar 

References

  • Pryzwansky KB (1982) Applications of double-label immunofluorescence. In: Bullock GR, Petrusz P (ed) Techniques in immunocytochemistry, voll. Academic Press, London, pp 77–90

    Google Scholar 

  • Mason DY, Woolston RE (1982) Double immunoenzymatic labelling. In: Bullock GR, Petrusz P (ed) Techniques in immunocytochemistry, Vol 1. Academic Press, London, pp 135–154

    Google Scholar 

  • Mason DY, Bell JI, Christensson B, Biberfeld P (1980) An immunohistological study of human lymphoma. Clin Exp Immunol 40:235–248

    PubMed  CAS  Google Scholar 

Further Reading

  • Sako H, Nakane Y, Okino K, Nishihara K, Kodama M, Kawata M, Yamada H (1986) Simultaneous detection of B-cells and T-cells by a double immunohistochemical technqiue using immunogold-silver staining and the avidin-biotin-peroxidase complex method. Histochemistry 86:1–4

    Article  PubMed  CAS  Google Scholar 

  • Kelly J, Wheland CA, Weir DG, Feighery C (1987) Removal of endogenous peroxidase activity from cryostat sections for immunoperoxidase visualization of monoclonal antibodies. J Immunol Methods 96:127–132

    Article  PubMed  CAS  Google Scholar 

  • Visser L, Groenewoud R, Poppema S (1987) Methods in immunohistology. Biotest Bull 3:115–120

    Google Scholar 

References

  • Maples JA (1985) A method for the covalent attachment of cells to glass slides for use in immunohistochemical assays. Am J Clin Pathol 83 (3): 356–363

    PubMed  CAS  Google Scholar 

References

  • Arunachalam B, Talwar GP, Raghupathy R (1990) A simplified cellular ELISA (CELISA) for the detection of antibodies reacting with cell-surface antigens. J Immunol Methods 135:181–189

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten H, Beulshausen H, Bätzing-Feigenbaum J, Bieber F, Zierz R, Götze O (1987) Determination of the T3–3A1 antigen in PHA-induced human T-cells by standardized cell-ELISA. J Immunol Methods 96:201–209

    Article  PubMed  CAS  Google Scholar 

  • Gaffar SA, Li Z, Epstein AL (1989) A live cell enzyme-linked immunosorbent assay for detecting human hepatoma membrane antigens. Hybridoma 8:331–336

    Article  PubMed  CAS  Google Scholar 

  • Karbowiak I, Appel S (1988) Determination of lymphocytes subpopulations by enzyme immunoassay. Comparison with conventional fluorescence microscopy. J Immunol Methods 112:31–35

    Article  PubMed  CAS  Google Scholar 

  • Landsdorp PM, Astaldi GCB, Oosterhof F, Janssen MC, Zeijlemaker WP (1980) Immunope-roxidase procedures to detect monoclonal antibodies against cell surface antigens. Quantitation of binding and staining of individual cells. J Immunol Methods 39:393–405

    Article  Google Scholar 

  • Landsdorp PM, Oosterhof F, Astaldi GCB, Zeijlmaker WP (1982) Detection of HLA antigens on blood platelets and lymphocytes by means of monoclonal antibodies in an ELISA technique. Tissue Antigens 19:11–19

    Article  Google Scholar 

  • Layton GT, Smithyman AM (1983) A cell ELISA technique. The direct detection and semiquantitation of immunoglobulin positive cells in 7 day lymphocyte cultures using the microtiter culture plates as the solid phase. J Immunol Methods 57:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pauli G, Gregersen J-P, Ludwig H (1984) Plaque/focus immunoassay: a simple method for detecting antiviral monoclonal or other antibodies and viral antigens in cells. J Immunol Methods 74:337–344

    Article  PubMed  CAS  Google Scholar 

References

  • Cunningham AJ, Szernberg A (1968) Further improvements in the plaque technique for detecting single antibody forming cells. Immunology 14:599–609

    PubMed  CAS  Google Scholar 

  • Möller SA, Borrebaeck CAK (1985) A filter immuno-plaque assay for the detection of antibody-secreting cells in vitro. J Immunol Methods 79:195–204

    Article  PubMed  Google Scholar 

Further Reading

  • Czerkinsky CC, Nilsson L-A, Nygren H, Ouchterlony Ö, Tarkowski A (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for the enumeration of specific antibody-secreting cells. J Immunol Methods 65:109–121

    Article  PubMed  CAS  Google Scholar 

  • Franci C, Ingles J, Castro R, Vidal J (1986) Further studies on the ELISA-spot technique. J Immunol Methods 88:225–232

    Article  PubMed  CAS  Google Scholar 

  • Franci C, Vidal J (1988) Coupling redox and enzymic reactions improves the sensitivity of the ELISA-spot assay. J Immunol Methods 107:239–244

    Article  PubMed  CAS  Google Scholar 

  • Möller SA, Borrebaeck CAK (1985) A filter immuno-plaque assay for the detecton of antibody-secreting cells in vitro. J Immunol Methods 79:195–204

    Article  PubMed  Google Scholar 

  • Sedwick JD, Holt PG (1983) A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J Immunol Methods 57:301–309

    Article  Google Scholar 

  • Sedwick JD, Holt PG (1986) The ELISA-plaque assay for the detection and enumeration of antibody-secreting cells. J Immunol Methods 87:37–44

    Article  Google Scholar 

References

  • Beuche W, Thomas RS, Felgenhauer K (1989) Demonstration of zoster virus antibodies in cerebrospinal fluid cells. J Neurol 236:26–28

    Article  PubMed  CAS  Google Scholar 

  • Beuche W, Siever A, Felgenhauer K (1992) Specific antigen binding by activated CSF B-lymphocytes in acute neuroborreliosis. J Neurol 239:322–326

    Article  PubMed  CAS  Google Scholar 

  • Mason DY (1985) Immunocytochemical labeling of monoclonal antibodies by the APAAP immunoalkaline phosphatase technique. In: Bullock GR, Petrusz P (eds) Techniques in immunocytochemistry, vol 3. Academic Press, London, pp 25–42

    Google Scholar 

References

  • Gershoni JM, Palade GE (1982) Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to a positively charged membrane filter. Anal Biochem 124:396–405

    Article  PubMed  CAS  Google Scholar 

  • Gershoni JM, Palade GE (1983) Protein-blotting: principles and applications. Anal Biochem 131:1–15

    Article  PubMed  CAS  Google Scholar 

  • Graham C, Lundholm V, Kaprowsky MJ (1965) Cytochemical demonstration of peroxidase activity with 3-amino-9-ethylcarbazole. J Histochem Cytochem 13:150–152

    Article  PubMed  CAS  Google Scholar 

  • Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal antibodies. Anal Biochem 119:142–147

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Grondahl-Hansen J, Huang J-Y, Nielsen LS, Andreasen PA, Dano K (1986) General detection of proteins after electroblotting by trinitrobenzene sulphonic acid derivatization and immunochemical staining with a monoclonal antibody against the trinitrophenyl group. J Biochem Biophys Methods 12:51–59

    Article  PubMed  CAS  Google Scholar 

  • Handman E, Jarvis HM (1985) Nitrocellulose-based assays for the detection of glycolipids and other antigens: mechanism of binding to nitrocellulose. J Immunol Methods 83:113–123

    Article  PubMed  CAS  Google Scholar 

  • Sternberg J, Jeppesen P (1983) Dot-blotting — a novel screening assay for antibodies in hybridoma cultures. J Immunol Methods 64:39–43

    Article  PubMed  CAS  Google Scholar 

  • Stya M, Wahl R (1984) Dot-base ELISA and RIA: two rapid assays that screen hybridoma supernatants against whole live cells. J Immunol Methods 73:75–81

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Gordon J (1984) Immunoblotting and dot immunoblotting — current status and outlook. J Immunol Methods 72:313–340

    Article  PubMed  CAS  Google Scholar 

References: Blocking

  • Bird CR, Gearing AJH, Thorpe R (1988) The use of Tween 20 alone as a blocking agent for immunoblotting can cause artefactual results. J Immunol Methods 106:175–179

    Article  PubMed  CAS  Google Scholar 

  • Hauri H-P, Bucher K (1986) Immunoblotting with monoclonal antibodies: importance of the blocking solution. Anal Biochem 159:386–389

    Article  PubMed  CAS  Google Scholar 

References: Amplification of the Signal

  • Cox DP, Schroff PD (1986) Immunogold staining reagents: a sensitive technique for biomedical research. Int Biotechnol Lab 4:34–45

    Google Scholar 

  • Egger D, Bienz K (1987) Colloidal gold staining and immunoprobing of proteins on the same nitrocellulose filter. Anal Biochem 166:413–417

    Article  PubMed  CAS  Google Scholar 

  • Hauber R, Geiger R (1987) A new, very sensitive, bioluminescence-enhanced detection system for protein blotting. J Clin Chem Clin Biochem 25:511–514

    PubMed  CAS  Google Scholar 

  • Hunter JB, Hunter SM (1987) Quantification of proteins in the low nanogram range by staining with the colloidal gold stain aurodye. Anal Biochem 164:430–433

    Article  PubMed  CAS  Google Scholar 

  • Sampson J, Matthews JA, Thorpe GH (1985) An enhanced luminescence dot-immunobinding assay for Cytomegalovirus antibody monitored using instant photographic film. Anal Lett 18 (B11): 1307–1320

    Article  CAS  Google Scholar 

  • Swerdlow PS, Finley D, Varshavsky A (1986) Enhancement of immunoblot sensitivity by heating of hydrated filters. Anal Biochem 156:147–153

    Article  PubMed  CAS  Google Scholar 

References

  • Cole SR, Ashman LK, Ey PL (1987) Biotinylatin: an alternative to radioiodination for the identification of cell surface antigens in immunoprecipitates. Mol Immunol 24:699–705

    Article  PubMed  CAS  Google Scholar 

  • Davies AA, Brown MH (1987) Biochemical characterization of lymphocyte surface antigens. In: Klaus GGB (ed) Lymphocytes: a practical approach. IRL Press, Oxford pp 229–253

    Google Scholar 

  • Firestone GL, Winguth SD (1990) Immunoprecipitation of Proteins. In: Deutscher MP (ed) Guide to protein purification. Methods in enzymology, vol 182, pp 688–700

    Chapter  Google Scholar 

  • Goding JW (1983) Analysis of antigens recognized by monoclonal antibodies. In: Goding JW (ed) Monoclonal antibodies: principles and practice. Academic Press, London, pp 134–179

    Google Scholar 

  • Hjelmeland LM (1990) Solubilization of native membrane proteins. In: Deutscher MP (ed) Guide to protein purification. Methods in enzymology, vol 182, pp 253–264

    Chapter  Google Scholar 

  • Neugebauer J (1987) A guide to the properties and uses of detergents in biology and biochemistry. Calbiochem Brand Biochemicals

    Google Scholar 

  • O’Connel PJ, Gerkisd V, d’Apice AJ (1991) Variable O-glycosylation of CD13 (aminopeptidase N). J Biol Chem 266:4593–4597

    Google Scholar 

  • Takacs BJ, Staehelin T (1981) Biochemical characterzation of cell surface antigens using monoclonal antibodies. In: Lefkovits I, Pernis B (eds) Immunological methods, vol 2, Academic Press, pp 27–54

    Google Scholar 

  • Timmons TM, Dunbar BS (1990) Protein blotting and immunodetection. In: Deutscher MP (ed) Guide to protein purification. Methods in enzymology, vol 182, pp 679–688

    Chapter  Google Scholar 

  • Torimoto Y, Sugita K, Weinberg DS, Dang NH, Dnahue C, Letvin NL, Schlossman SF, Morimoto C (1991) Development of a monoclonal antibody, anti-aC2, which is involved in the interaction of CD4 T helper cells and activated B cells. J Immunol 146:2176–2184

    PubMed  CAS  Google Scholar 

References

  • Kandzia J, Scholz W, Anderson M J, Müller-Ruchholtz W (1984) Magnetic albumin/protein A immunomicrospheres. I. Preparation, antibody binding capacity and chemical stability. J Immunol Methods 75:31–41

    Article  PubMed  CAS  Google Scholar 

  • Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231–238

    Article  PubMed  CAS  Google Scholar 

  • Molday RS (1984) Cell labelling and separation using immunospecific microspheres. In: Pretlow TG, Pretlow TN (eds) Cell separation: methods and selected applications 3. Academic Press, New York, pp 237–263

    Google Scholar 

  • Pollak A, Blumenfeld H, Wax M, Baughn RL, Withesides GM (1980) Enzyme immobilization by condensation copolymerization into cross linked Polyacrylamide gels. J Am Chem Soc 102:6324–6336

    Article  CAS  Google Scholar 

Further Reading

  • Englert D, Hempel K (1981) Magnet separation. Int Arch Allergy Appl Immunol 66:326–331

    Article  PubMed  CAS  Google Scholar 

  • Kandzia J, Scholz W, Anderson MJ, Müller-Ruchholtz W (1985) Magnetic albumin/protein A immunomicrospheres. II. Specificity, reproducibility, and resolution of the magnetic cell separation technique. Diagn Immunol 3:83–88

    PubMed  CAS  Google Scholar 

  • Kemshead JT, Heath L, Gibson FM, Katz F, Richmond F, Treleaven J, Ugelstad J (1986) Magnetic microspheres and monoclonal antibodies for the depletion of neuroblastoma cells from bone marrow: experiences, improvements and observations. Br J Cancer 54:771–778

    Article  PubMed  CAS  Google Scholar 

  • Kemshead JT, Ugelstad J (1985): Magnetic separation techniques: their application to medicine. Mol Cell Biochem 67:11–18

    PubMed  CAS  Google Scholar 

  • Kronick P, Gilpin RW (1986) Use of superparamagnetic particles for isolation of cells. J Biochem Biophys Methods 12:73–80

    Article  PubMed  CAS  Google Scholar 

  • Kvalheim G, Fodstad O, Pihl A, Nustad K, Pharo A, Ugelstad J, Funderud S (1987) Eliminaton of B-lymphoma cells from human bone marrow: model experiments using monodisperse magnetic particles coated with primary monoclonal antibody. Cancer Res 47:846–851

    PubMed  CAS  Google Scholar 

  • Lea T, Vartdal F, Davies C, Ugelstad J (1985) Magnetic monosized polymer particles for fast and specific fractionation of human mononuclear cells. Scand J Immunol 22:207–216

    Article  PubMed  CAS  Google Scholar 

  • Owen CS (1984) Magnetic Cell Sorting. In: Pretlow TG, Pretlow TN (eds) Cell separation: methods and selected applications 2. Academic Press, New York, pp 127–144

    Google Scholar 

  • Owen CS, Sykes NL (1984) Magnetic labelling and cell sorting. J Immunol Methods 73:41–48

    Article  PubMed  CAS  Google Scholar 

  • Schröder U, Segren S, Gemmefors C, Hedlund G, Janson B, Sjogren H-O, Borrebaeck CAK (1986) Magnetic carbohydrate nanoparticles for affinity cell separation. J Immunol Methods 93:45–53

    Article  PubMed  Google Scholar 

  • Shreve P, Aisen AM (1986) Monoclonal antibodies labeled with polymeric paramagnetic ion chelates. Magn Reson Med 3:336–342

    Article  PubMed  CAS  Google Scholar 

  • Vartdal F, Kvalheim G, Lea TE, Bosnes V, Gaudernack G, Ugelstad J, Albrechtsen D (1987) Depletion of T lymphocytes from human bone marrow. Use of magnetic monosized polymer microspheres coated with T-lymphocyte-specific monoclonal antibodies. Transplantation 43:366–371

    Article  PubMed  CAS  Google Scholar 

  • Watson J (1973) Magnetic filtration. J Appl Phys 44:4209–4015

    Article  CAS  Google Scholar 

  • Whitesides GM, Kazlauskas RJ, Josephson L (1983) Magnetic separations in biotechnology. Trends Biotechnol 1:144–148

    Article  Google Scholar 

Further Reading

  • Coulter AR, Cox JC, Harris RD, Healey K (1989) An enzyme immunoassay for isotyping mouse monoclonal antibodies. Med Lab Sci 46:54–58

    PubMed  CAS  Google Scholar 

References

  • Ey PL, Prowse SJ, Jenkin CR (1978) Isolation of pure IgGl, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry 15:429–436

    Article  PubMed  CAS  Google Scholar 

  • Henson GW (1985) The HPLC of Immunoglobulins. In: Lefkovits I, Pernis B (eds) Immunological methods Vol III. Academic Press, New York, pp 111–124

    Google Scholar 

  • Juarez-Salinas H, Ott GS, Chen J-C, Brooks TL, Stanker LH (1986) Separation of IgG idiotypes by high-performance liquid chromatography. Methods Enzymol 121:615–622

    Article  PubMed  CAS  Google Scholar 

  • Nau DR (1989) Chromatographic analysis and purification of antibodies. In: Swaminathan B, Prakash G (eds) Nuclei acid and monoclonal antibody probes. Marcel Dekker, New York, pp 383–430

    Google Scholar 

Further Reading

References

  • Clarke JT (1964) Simplified „Disc“Electrophoresis. Ann NY Acad Sci 121:428–436

    Article  PubMed  CAS  Google Scholar 

  • Hempelmann E (1982) Bilden und Auflösen von Proteinstapeln. In: Radola BJ (ed) Ekeltrophorese Forum ‘82, Technische Universität, München, pp 111–116

    Google Scholar 

  • Hempelmann E, Schirmer RH, Fritsch G, Hundt E, Gröschel-Stewart U (1987) Studies on glutathione reductase and methemoglobin from human erythrocytes parasitized with Plasmodium falciparum. Mol Biochem Parasitol 23:19–24

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Margolis J, Kenrick KG (1967) Electrophoresis in Polyacrylamide concentration gradient. Biochem Biophys Res Commun 27:68–73

    Article  PubMed  CAS  Google Scholar 

  • Neville DM (1971) Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem 246:6328–6334

    PubMed  CAS  Google Scholar 

  • Ornstein L (1964) Disc electrophoresis-background and theory. Ann NY Acad Sci 121:321–349

    Article  PubMed  CAS  Google Scholar 

  • Raymond S, Weintraub L (1959) Acrylamide gel as a supporting medium for zone electrophorese. Science 130:711

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AL, Vinuela E, Maizel JV (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-Polyacrylamide gels. Biochem Biophys Res Comm 28:815–820

    Article  PubMed  CAS  Google Scholar 

  • Smithies O (1955) Zone electrophoresis in starch gels: group variations in serum proteins of normal human adults. Biochem J 61:629–641

    PubMed  CAS  Google Scholar 

  • Tiselius A (1937) A new apparatus for electrophoretic analysis of colloidal mixtures. Trans Faraday Soc 33:524–531

    Article  CAS  Google Scholar 

References

  • Allen RC (1980) Rapid isoelectric focusing and detection of nanogram amounts of proteins from body tissues and fluids. Electrophoresis 1:32–37

    Article  CAS  Google Scholar 

  • Altland K, Hackler R (1981) Horizontal gradient Polyacrylamide gel electrophoresis. Electrophoresis 2:49–54

    Article  CAS  Google Scholar 

  • Bjellqvist B, Ek K, Righetti PG, Gianazza E, Görg A, Westermaier R, Postel W (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6:317–339

    Article  PubMed  CAS  Google Scholar 

  • Dossi G, Celetano F, Gianazza E, Righetti PG (1983) Isoelectric focusing in immobilized pH gradients: generation of extended pH intervals. J Biochem Biophys Methods 7:123–142

    Article  PubMed  CAS  Google Scholar 

  • Gianazza E, Dossi G, Celentano F, Righetti PG (1983) Isoelectric focusing in immobilized pH gradients: generation and optimization of wide pH intervals with two-chamber mixers. J Biochem Biophys Methods 8:109–133

    Article  PubMed  CAS  Google Scholar 

  • Görg A, Postel W, Westermaier R (1978) Ultrathin-layer isoelectric focusing in Polyacrylamide gels on cellophane. Anal Biochem 89:60–70

    Article  PubMed  Google Scholar 

  • Görg A, Postel W, Westermaier R (1982) SDS electrophoresis of legume seed proteins in horizontal ultrathin-layer pore gradient gels. Z Lebensm Unters Forsch 174:282–285

    Article  Google Scholar 

  • Görg A, Postel W, Günther S, Weser J (1986) Electrophoretic methods in horizontal systems. In: Dunn MJ (ed) Electrophoresis ‘86. VCH Verlagsgesellschaft, Weinheim, pp 435–449

    Google Scholar 

  • Kinzkofer A, Radola BJ (1981) Miniature ultrathin-layer isoelectric focusing in 20–50 u Polyacrylamide gels. Electroporesis 2:174–183

    Article  CAS  Google Scholar 

  • Neuhoff V (1980) Recent advances in microelectrophoresis. In: Radola BJ (ed) Electrophoresis 79. De Gruyter, Berlin, pp 203–218

    Google Scholar 

  • Olsson I, Axiö-Fredriksson UB, Degerman M, Olsson B (1988) Fast horizontal electrophoresis. I. Isoelectric focusing and Polyacrylamide gel electrophoresis using Phast System. Electrophoresis 9:16–22

    Article  PubMed  CAS  Google Scholar 

  • Peter R, Wolfrum DI, Neuhoff V (1976) Micro-electrophoresis in continuous Polyacrylamide gradient gels for the analytical separation of protein extracts from planarians (Platyhelminthes: Turbellaria tricladida). Comp Biochem Physiol 55:583–589

    Article  CAS  Google Scholar 

  • Poehling HM, Neuhoff V (1980) One- and two-dimensional electrophoresis in micro-slab gels. Electrophoresis 1:90–102

    Article  CAS  Google Scholar 

  • Radola BJ (1980 a) Ultrathin-layer isoelectric focusing in 50–100 μ Polyacrylamide gels on silanized glass plates or polyester films. In: Radola BJ (ed) Electrophoresis ‘79. De Gruyter, Berlin, pp 79–84

    Google Scholar 

  • Radola BJ (1980 b) Ultrathin-layer isoelectric focusing in 50–100 μ Polyacrylamide gels on silanized glass plates or polyester films. Electrophoresis 1:43–46

    Article  CAS  Google Scholar 

  • Righetti PG (1983) Isoelectric focusing: theory, methodology and applications. In: Work TS, Burdon RH (eds) Laboratory techniques in biochemistry and molecular biology, vol 11. Elsevier, Amsterdam

    Google Scholar 

  • Rosengren A, Bjellqvist B, Gasparic V (1978) US Patent 4,130,470

    Google Scholar 

  • Rosengren A, Bjellqvist B, Gasparic V (1981) Deutsches Patent 2656 162

    Google Scholar 

  • Rüchel R, Mesecke S, Wolfrum DI, Neuhoff V (1974) Micro-electrophoresis in continuous-polyacrylamide-gradient gels. II. Fractionation and dissociation of sodium dodecylsul-fate protein complexes. Hoppe-Seyler’s Z Physiol Chem 355:997–1020

    Article  Google Scholar 

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri TR, Green TJ (1987) A sensitive urea-silver stain method for detecting trace quantities of separated proteins in Polyacrylamide gels. Prep Biochem 17:93–99

    Article  PubMed  CAS  Google Scholar 

  • Goldman D, Merril CR, Ebert MH (1980) Two-dimensional gel electrophoresis of cerebrospinal fluid proteins. Clin Chem 26:1317–1322

    PubMed  CAS  Google Scholar 

  • Hempelmann E, Kaminsky R (1986) Long term stability of colors after silver staining. Electrophoresis 7:481

    Article  CAS  Google Scholar 

  • Kerenyi L, Gallyas F (1973) Über Probleme der quantitativen Auswertung der mit physikalischer Entwicklung versilberten Agarelektrophoretogramme. Clin Chim Acta 47:425–436

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Morrissey JH (1981) Silver stain for proteins in Polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310

    Article  PubMed  CAS  Google Scholar 

  • Sammons DW, Adams LD, Nishizawa EE (1981) Ultrasensitive silver-based color staining of polypeptides in Polyacrylamide gels. Electrophoresis 2:135–141

    Article  CAS  Google Scholar 

  • Switzer RC, Merrill CR, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in Polyacrylamide gels. Anal Biochem 98:231–237

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM (1979) Studies and critique of Amido Black 10B, Coomassie Blue R, and Fast Green FCF as stains for proteins after Polyacrylamide gel electrophoresis. Anal Biochem 96:263–278

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Moeremans M, Daneeis G, De Wever B, De Mey J (1987) The use of colloidal metal particles in protein blotting. Electrophoresis 8:403–409

    Article  CAS  Google Scholar 

References

  • Barnes D, Sato G (1980) Serum-free cell culture: a unifying approach. Cell 22:649–655

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Ben-Hur H, Wilchek M (1987) Enzyme-based detection of glycoproteins on blot transfers using avidin-biotin technology. Anal Biochem 161:123–131

    Article  PubMed  CAS  Google Scholar 

  • Beisiegel U (1986) Protein blotting. Electrophoresis 7:1–18

    Article  CAS  Google Scholar 

  • Bog-Hansen TC (1982) Lectins: biology, biochemistry, clinical biochemistry. De Gruyter, Berlin

    Google Scholar 

  • Gershoni JM, Palade GE (1983) Protein blotting: principles and applications. Anal Biochem 131:1–15

    Article  PubMed  CAS  Google Scholar 

  • Hamilton RG, Roebber M, Reimer CB, Rodkey LS (1987) Isoelectric focusing-affinity immunoblot analysis of mouse monoclonal antibodies to the four human IgG subclasses. Electrophoresis 8:127–134

    Article  Google Scholar 

  • Hancock K, Tsang VCW (1983) India ink staining of proteins on nitrocellulose paper. Anal Biochem 133:157–162

    Article  PubMed  CAS  Google Scholar 

  • Knisley KA, Rodkey LS (1986) Affinity immunoblotting. High resolution isoelectric focusing analysis of antibody clonotype distribution. J Immunol Methods 95:79–87

    Article  PubMed  CAS  Google Scholar 

  • Laduca FM, Dang CV, Bell WR (1986) Application of nitrocellulose immunoassay for quantitation of proteins secreted in culture medium. Anal Biochem 158:262–267

    Article  PubMed  CAS  Google Scholar 

  • Miribel A, Arnaud P (1988) Electrotransfer of proteins following Polyacrylamide gel electrophoresis. J Immunol Methods 107:253–259

    Article  PubMed  CAS  Google Scholar 

  • Moeremans M, Daneels G, de Mey J (1985) Sensitive colloidal metal (gold or silver) staining of protein blots on nitrocellulose membranes. Anal Biochem 145:315–321

    Article  PubMed  CAS  Google Scholar 

  • Moeremans M, Daneels G, de Raeymaeker M, de Wever B, de Mey J (1987) The use of colloidal metal particles in protein blotting. Electrophoresis 8:403–409

    Article  CAS  Google Scholar 

  • Nghiem H-O (1988) Miniaturization of the immunoblot technique. Rapid screening for the detection of monoclonal and polyclonal antibodies. J Immunol Methods 111:137–141

    Article  PubMed  CAS  Google Scholar 

  • Otey CA, Kalnoski MH, Bulinski JC (1986) A procedure for the immunoblotting of proteins separated on isoelectric focusing gels. Anal Biochem 157:71–76

    Article  PubMed  CAS  Google Scholar 

  • Rohringer R, Holden DW (1985) Protein blotting: detection of proteins with colloidal gold, and of glycoproteins and lectins with biotin-conjugated and enzyme probes. Anal Biochem 144:118–127

    Article  PubMed  CAS  Google Scholar 

  • Stott DI (1989) Immunoblotting and dot blotting. J Immunol Methods 119:153–187

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

References

  • Burnens A, Demotz S, Corradin G, Binz H, Bosshard HR (1987) Epitope mapping by chemical modification of free and antibody-bound protein antigen. Science 235:780–783

    Article  PubMed  CAS  Google Scholar 

  • Chatterton JE, Phillips ML, Curtiss LK, Milne RW, Marcel YL, Schumaker VN (1991) Mapping apolipoprotein B on the low density lipoprotein surface by immunoelectron microscopy. J Biol Chem 266:5955–5962

    PubMed  CAS  Google Scholar 

  • Dowse CA, Carnegie PR, Kemp BE, Sheng HZ, Grgacic EV, Bernard CCA (1987) Rapid characterization of protein epitopes recognized by monoclonal antibodies using direct probing on thin-layer and paper chromatograms. J Immunol Methods 97:229–235

    Article  PubMed  CAS  Google Scholar 

  • Fägerstam LG, Frosteil A, Karlsson R, Kullmann M, Larsson A, Malmqvist M, Butt H (1990) Detection of antigen-antibody interactions by surface plasmon resonance. Application to epitope mapping. J Mol Recog 3:208–214

    Article  Google Scholar 

  • Fox PC, Siraganian RP (1986) Multiple reactivity of monoclonal antibodies. Hybridoma 5:223–229

    Article  PubMed  CAS  Google Scholar 

  • Geysen HM, Rodda SJ, Mason TJ, Tribbick G, Schoofs PG (1987) Strategies for epitope analysis using peptide synthesis. J Immunol Methods 102:259–274

    Article  PubMed  CAS  Google Scholar 

  • Goding JW, Herzenberg LA (1980) Biosynthesis of lymphocyte surface IgD in the mouse. J Immunol 124:2540–2547

    PubMed  CAS  Google Scholar 

  • Hopp TP (1986) Protein surface analysis. Methods for identifying antigenic determinants and other interaction sites. J Immunol Methods 88:1–18

    Article  PubMed  CAS  Google Scholar 

  • Karande AA, Visweswariah SS, Adiga PR (1987) A rapid method of epitope analysis using superose 12 gel filtration. J Immunol Methods 99:173–177

    Article  PubMed  CAS  Google Scholar 

  • Karlsson G, Mansson J-E, Wikstrand C, Bigner D, Svennerholm L (1990) Characterization of the binding epitope of the monoclonal antibody DMAb-1 to ganglioside GM2. Biochim Biophys Acta 1043:267–272

    PubMed  CAS  Google Scholar 

  • Kenett D (1988) A simple ELISA for the classification of monoclonal antibodies according to their recognition of native epitopes. J Immunol Methods 106:203–209

    Article  PubMed  CAS  Google Scholar 

  • Rimm DL, Kaiser DA, Bhandari D, Maupin P, Kiehart DP, Pollard TD (1990) Identification of functional regions on the tail of Acanthamoeba myosin-II using recombinant fusion proteins. I. High resolution epitope mapping and characterization of monoclonal antibody binding sites. J Cell Biol 111:2405–2416

    Article  PubMed  CAS  Google Scholar 

  • Russell JK, Hayes MP, Carter JM, Torres BA, Dunn BM, Russell SW, Johnson HM (1986) Epitope and functional specificity of monoclonal antibodies to mouse interferon-gamma: the synthetic peptide approach. J Immunol 136:3324–3328

    PubMed  CAS  Google Scholar 

  • Smith AM, Benjamin DC (1991) The antigenic surface f staphylococcal nuclease. II. Analysis of the N-1 epitope by site-directed mutagenesis. J Immunol 146:1259–1264

    PubMed  CAS  Google Scholar 

  • Wilson RW (1988) Monoclonal antibodies exhibiting polyspecific reactivity: an overview. J Clin Immunoassay 11:41–46

    CAS  Google Scholar 

  • Yarmush DM, Morel G, Yarmush ML (1987) A new technique for mapping epitope specificities of monoclonal antibodies using quasi-elastic light scattering spectroscopy. J Biochem Biophys Methods 14:279–289

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Westhof E, Altschuh D, Moras D, Bloomer AC, Mondragon A, Klug A, Van Regenmortel MHV (1984) Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature 311:123–126

    Article  PubMed  CAS  Google Scholar 

References

  • Friquet B, Djavadi-Ohaniance L, Pages J, Bussard A, Goldberg M (1983) A convenient enzyme-linked immunosorbent for testing whether monoclonal antibodies recognize the same antigenic site. Application to hybridomas specific for the β-subunit of Escherichia coli tryptophan synthase. J Immunol Methods 60:351–358

    Article  Google Scholar 

  • Handman E, Mitchell GF (1986) Monoclonal antibodies in the study of parasites and host-parasite relationships. In: Weir DM (ed) Handbook of experimental immunology, vol 4. Applications of immunological methods in biomedical sciences. Blackwell, Oxford, pp 113.1–15

    Google Scholar 

  • Würzner R, Oppermann M, Zierz R, Baumgarten H, Götze O (1990) Determination of epitope specificities of monoclonal antibodies using unprocessed supernatants of hybridoma cultures. J Immunol Methods 126:231–237

    Article  PubMed  Google Scholar 

Further Reading

  • Moyle WR, Ehrlich PH, Canfield RE (1982) Use of monoclonal antibodies to subunits of human chorionic gonadotropin to examine the orientation of the hormone in its complex with receptor. Proc Natl Acad Sci USA 79:2245–2249

    Article  PubMed  CAS  Google Scholar 

  • Parham P, Androlewicz MJ, Brodsky FM, Holmes NJ, Ways JP (1982) Monoclonal antibodies: purification, fragmentation and application to structural and functional studies of class I MHC antigens. J Immunol Methods 53:133–173

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peters, J.H. et al. (1992). Demonstration of Monoclonal Antibodies. In: Peters, J.H., Baumgarten, H. (eds) Monoclonal Antibodies. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74532-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74532-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74534-8

  • Online ISBN: 978-3-642-74532-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics