Selective Delivery of Antigens by Recombinant Bacteria

  • R. CurtissIII
  • S. M. Kelly
  • P. A. Gulig
  • K. Nakayama
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 146)

Abstract

All infectious disease agents have specific mechanisms to colonize, invade, and overcome a host. If this mechanism can be defined in biochemical terms, it should be possible to develop a vaccine to prevent infection and disease. Furthermore, understanding the means by which certain bacterial pathogens target to specific lymphoid tissues in an animal host enables one to develop novel strategies for targeting foreign antigens to that specific lymphoid tissue to elicit an immune response.

Keywords

Adenosine Lysine Bacillus Hull Methionine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alper MD, Ames BN (1978) Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: Positive selection of Salmonella typhimurium cya and crp mutants. J Bacteriol 133:149–157PubMedGoogle Scholar
  2. Amann E, Brosius J (1985) ‘ATG vectors’ for regulated high-level expression of cloned genes in Escherichia coli. Gene 40:183–190PubMedCrossRefGoogle Scholar
  3. Asherson GL, Zembala M, Perera MACC, Mayhew B, Thomas WR (1977) Production of immunity and unresponsiveness in the mouse by feeding contact sensitizing agents and the role of suppressor cells in the Peyer’s patches, mesenteric lymph nodes, and other lymphoid tissues. Cell Immunol 33:145–155PubMedCrossRefGoogle Scholar
  4. Bacon GA, Burrows TW, Yates M (1950) The effects of biochemical mutation on the virulence of Bacterium typhosum: The virulence of mutants. Brit J Exp Path 32:714–724Google Scholar
  5. Bacon GA, Burrows TW, Yates M (1951) The effects of biochemical mutation on the virulence of Bacterium typhosum: The loss of virulence of certain mutants. Brit J Exp Pathol 32:85–96Google Scholar
  6. Baron LS, Kopecko DJ, Formal SB, Seid R, Guerry P, Powell C (1987) Introduction of Shigella flexneri 2a type and group antigen genes into oral typhoid vaccine strain Salmonella typhi Ty21a. Infect Immun 55:2797–2801PubMedGoogle Scholar
  7. Barrow PA, Simpson JM, Lovell MA, Binns MM (1987) Contribution of Salmonella gallinarum large plasmid toward virulence in fowl typhoid. Infect Immun 55:388–392PubMedGoogle Scholar
  8. Bauman N, Davis BD (1957) Selection of auxotrophic bacterial mutants through diaminopimelic acid or thymine deprival. Science 126:170PubMedCrossRefGoogle Scholar
  9. Bienenstock J, McDermott M, Befus D, O’Neil LM (1978) A common mucosal immunologic system involving the bronchus, breast, and bowel. Adv Exp Med Biol 107:53–59PubMedGoogle Scholar
  10. Black RE, Levine MM, Clements ML, Losonsky G, Herrington D, Berman S, Formal SB (1987) Prevention of shigellosis by a Salmonella typhi-Shigella sonnei bivalent vaccine. J Infect Dis 155:1260–1265PubMedCrossRefGoogle Scholar
  11. Bochner BR, Huang HC, Schieven GL, Ames BN (1980) Positive selection for loss of tetracycline resistance. J Bacteriol 143:926–933PubMedGoogle Scholar
  12. Botsford JL (1981) Cyclic nucleotides in prokaryotes. Microbiol Rev 45:620–642PubMedGoogle Scholar
  13. Bremer E, Gerlach P, Middendorf A (1988) Double negative and positive control of tsx expression in Escherichia coli. J Bacteriol 170:108–116PubMedGoogle Scholar
  14. Brown A, Hormaeche CE, Demarco de Hormaeche R, Winther M, Dougan G, Maskell DJ, Stocker BAD (1987) An attenuated aroA Salmonella typhimurium vaccine elicits humoral and cellular immunity to cloned β-galactosidase in mice. J Infect Dis 155:86–92PubMedCrossRefGoogle Scholar
  15. Cardineau GA, Curtiss III R (1987) Nucleotide sequence of the asd gene of Streptococcus mutans: Identification of the promoter region and evidence for attenuator-like sequences preceding the structural gene. J Biol Chem 262:3344–3353PubMedGoogle Scholar
  16. Carter PB, Collins FM (1974) The route of enteric infection in normal mice. J Exp Med 139:1189–1203PubMedCrossRefGoogle Scholar
  17. Cebra JJ, Gearhart PJ, Kamat R, Robertson SM, Tseng J (1976) Origin and differentiation of lymphocytes involved in the secretory IgA response. Cold Spring Harbor Symp Quant Biol 41:201–221Google Scholar
  18. Chikami GK, Fierer J, Guiney DG (1985) Plasmid-mediated virulence in Salmonella dublin demonstrated by use of a Tn5-oriT construct. Infect Immun 50:420–424PubMedGoogle Scholar
  19. Clements JD (1987) Use of attenuated mutants of Salmonella as carriers for delivery of heterologous antigens to the secretory immune system. Pathol Immunopathol Res 6:137–146PubMedCrossRefGoogle Scholar
  20. Clements JD, El-Morshidy S (1984) Construction of a potential live oral bivalent vaccine for typhoid fever and cholera-Escherichia coli-related diarrheas. Infect Immun 46:564–569PubMedGoogle Scholar
  21. Clements JD, Lyon FL, Lowe KL, Farrand AL, El-Morshidy S (1986) Oral immunization of mice with attenuated Salmonella enteritidis containing a recombinant plasmid which encodes for production of the B subunit of heat-labile Escherichia coli enterotoxin. Infect Immun 53:685–692PubMedGoogle Scholar
  22. Cohen SN, Chang ACY, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244PubMedCrossRefGoogle Scholar
  23. Collins FM (1972) Salmonellosis in orally infected specific pathogen-free C57BL mice. Infect Immun 5:191–198PubMedGoogle Scholar
  24. Curtiss III R (1978) Biological containment and cloning vector transmissibility. J Infect Dis 137:668–675PubMedCrossRefGoogle Scholar
  25. Curtiss III R (1985) Genetic analysis of Streptococcus mutans virulence. Curr Top Microbiol Immun 118:253–277CrossRefGoogle Scholar
  26. Curtiss III R (1986) Genetic analysis of Streptococcus mutans virulence and prospects for an anticaries vaccine. J Dent Res 65:1034–1045PubMedCrossRefGoogle Scholar
  27. Curtiss III R, Kelly SM (1987) Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect Immun 55:3035–3043PubMedGoogle Scholar
  28. Curtiss III R, Pereira DA, Hsu JC, Hull SC, Clark JE, Maturin Sr LJ, Goldschmidt R, Moody R, Inoue M, Alexander L (1976) Biological containment: The subordination of Escherichia coli K-12. In: Beers Jr RF, Bassett EG (eds) Recombinant Molecules: Impact on Science and Society. Raven Press New York NY, p 45Google Scholar
  29. Curtiss III R, Inoue M, Pereira D, Hsu JC, Alexander L, Rock L (1977) Construction and use of safer bacterial host strains for recombinant DNA research. In: Scott WA, Werner RA (eds) Molecular Cloning of Recombinant DNA. Academic Press New York, p 99Google Scholar
  30. Curtiss III R, Holt RG, Barletta R, Robeson JP, Saito S (1983) Escherichia coli strains producing Streptococcus mutans proteins responsible for colonization and virulence. In: McGhee JR, Mestecky J (eds) The Secretory Immune System, Vol. 409. Ann NY Acad Sci p 688Google Scholar
  31. Curtiss III R, Goldschmidt R, Pastian R, Lyons M, Michalek SM, Mestecky J (1986) Cloning virulence determinants from Streptococcus mutans and the use of recombinant clones to construct bivalent oral vaccine strains to confer protective immunity against S. mutans-induced dental caries. In: Hamada S, Michalek SM, Kiyono H, Menaker L, McGhee JR (eds) Molecular Microbiology and Immunology of Streptococcus mutans. Elsevier North Holland p 173Google Scholar
  32. Curtiss III R, Goldschmidt R, Kelly SM, Lyons M, Michalek S, Pastian R, Stein S (1987) Recombinant avirulent Salmonella for oral immunization to induce mucosal immunity to bacterial pathogens. In: Kohler H, Lo Verde PT (eds) Vaccines: New Concepts and Developments. Proceedings of the Tenth International Convocation on Immunology. Longman Scientific and Technical, Harlow, Essex p 261Google Scholar
  33. Curtiss III R, Goldschmidt RM, Fletchall NB, Kelly SM (1988a) Avirulent Salmonella typhimurium Acya Acrp oral vaccine strains expressing a streptococcal colonization and virulence antigen. Vaccine 6:155–160PubMedCrossRefGoogle Scholar
  34. Curtiss III R, Kelly SM, Gulig PA, Gentry-Weeks CR, Galan JE (1988b) Avirulent Salmonella expressing virulence antigens from other pathogens for use as orally-administered vaccines. In: Roth J (ed) Virulence Mechanisms. American Society for Microbiology, Washington DC, p 311Google Scholar
  35. Dietzler DN, Leckie MP, Sternheim WL, Taxman TL, Unger JM, Porter SE (1977) Evidence for the regulation of bacterial glycogen synthesis by cyclic AMP. Biochem Biophys Res Commun 77:1468–1477PubMedCrossRefGoogle Scholar
  36. Dietzler DN, Leckie MP, Magnini JL, Sughrue MJ, Bergstein PE, Sternheim WL (1979) Contribution of adenosine cyclic 3′:5′-monophosphate to the regulation of bacterial glycogen synthesis in vivo. J Biol Chem 254:8308–8317PubMedGoogle Scholar
  37. Dougan G, Sellwood R, Maskell D, Sweeney K, Liew FY, Beesley J, Hormaeche C (1986) In vivo properties of a cloned K88 adherence antigen determinant. Infect Immun 52:344–347PubMedGoogle Scholar
  38. Dougan G, Hormaeche CE, Maskell DJ (1987a) Live oral Salmonella vaccines: Potential use of attenuated strains as carriers of heterologous antigens to the immune system. Parasite Immunol 9:151–160PubMedCrossRefGoogle Scholar
  39. Dougan G, Maskell D, Pickard D, Hormaeche C (1987b) Isolation of stable aroA mutants of Salmonella typhi Ty2: Properties and preliminary characterization in mice. Mol Gen Genet 207:402–405PubMedCrossRefGoogle Scholar
  40. Elson CO, Ealding W (1984) Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol 132:2736–2741PubMedGoogle Scholar
  41. Formal SB, Baron LS, Kopecko DJ, Powell C, Life CA (1981) Construction of a potential bivalent vaccine strain: Introduction of S. sonnei form I antigen genes into the galE Salmonella typhi Ty21a typhoid vaccine strain. Infect Immun 34:746–750PubMedGoogle Scholar
  42. Fukasawa T, Nikaido H (1959) Galactose-sensitive mutants of Salmonella. Nature (London) 184:1168–1169CrossRefGoogle Scholar
  43. Fukasawa T, Nikaido H (1961) Galactose-sensitive mutants of Salmonella. II. Bacteriolysis induced by galactose. Biochim Biophys Acta 48:470–483PubMedCrossRefGoogle Scholar
  44. Gaines S, Sprinz H, Tully JG, Tigertt WD (1968) Studies on infection and immunity in experimental typhoid fever. VII. The distribution of Salmonella typhi in chimpanzee tissue following oral challenge and the relationship between the numbers of bacilli and morphologic lesions. J Infect Dis 118:293–306PubMedCrossRefGoogle Scholar
  45. Galan JE, Timoney JF, Curtiss III R (In press) Expression and localization of the Streptococcus equi M protein in Escherichia coli and Salmonella typhimurium. In: Powell D (ed) Proceeding of the Fifth International Congress on Equine Infectious Diseases. Kentucky University Press, Lexington, KYGoogle Scholar
  46. Garges S, Adhya S (1985) Sites of allosteric shift in the structure of the cyclic AMP receptor protein. Cell 41:745–751PubMedCrossRefGoogle Scholar
  47. Germanier R, Furer E (1971) Immunity in experimental salmonellosis. II. Basis for the avirulence and protective capacity of galE mutants of Salmonella typhimurium. Infect Immun 4:663–673PubMedGoogle Scholar
  48. Germanier R, Furer E (1975) Isolation and characterization of GalE mutant Ty21a of Salmonella typhi: A candidate strain for a live, oral typhoid vaccine. J Infect Dis 131:553–558PubMedCrossRefGoogle Scholar
  49. Goebel W (ed) (1985) Genetic approaches to microbial pathogenicity. In: Curr Top Microbiol Immun, Vol. 118, Springer-Verlag New YorkGoogle Scholar
  50. Gulig PA, Curtiss III R (1987) Plasmid-associated virulence of Salmonella typhimurium. Infect Immun 55:2891–2901PubMedGoogle Scholar
  51. Gulig, PA, Curtiss III R (In press) Transposon-insertion mutagenesis of cloned virulence genes of the 100-kilobase plasmid of Salmonella typhimurium. Infect ImmunGoogle Scholar
  52. Habasha FG, Smith BP, Schwartz L, Ardans A, Reina-Guerra M (1985) Correlation of macrophage migration-inhibition factor and protection from challenge by exposure in calves vaccinated with Salmonella typhimurium. Am J Vet Res 46:1415–1421PubMedGoogle Scholar
  53. Hackett J, Kotlarski IK, Mathan V, Francki K, Rowley D (1986) The colonization of Peyer’s patches by a strain of Salmonella typhimurium cured of the cryptic plasmid. J Infect Dis 153:1119–1125PubMedCrossRefGoogle Scholar
  54. Hackett J, Wyk P, Reeves P, Mathan V (1987) Mediation of serum resistance in Salmonella typhimurium by an 11-kilodalton polypeptide encoded by the cryptic plasmid. J Infect Dis 155:540–549PubMedCrossRefGoogle Scholar
  55. Harwood CR, Meynell E (1975) Cyclic AMP and the production of sex pili by E coli K-12 carrying depressed sex factors. Nature 254:628–630PubMedCrossRefGoogle Scholar
  56. Heffernan EJ, Fierer J, Chikami G, Guiney D (1987) Natural history of oral Salmonella dublin infection in BALB/c mice: Effect of an 80-kilobase-pair plasmid on virulence. J Infect Dis 155:1254–1259PubMedCrossRefGoogle Scholar
  57. Hoiseth S, Stocker BAD (1981) Aromatic-dependent Salmonella typhimurium are nonvirulent and effective as live vaccines. Nature 291:238–239PubMedCrossRefGoogle Scholar
  58. Hone DM, Attridge SR, Forrest B, Morona R, Daniels D, LaBrooy JT, Bartholomeusz RCA, Shearman DJC, Hackett J (1988) A galE via (Vi Antigen-Negative) Mutant of Salmonella typhi Ty2 Retains Virulence in Humans. Infect Immun 56:1326–1333PubMedGoogle Scholar
  59. Hone D, Morona R, Attridge S, Hackett J (1987) Construction of defined galE mutants of Salmonella for use as vaccines. J Infect Dis 156:167–174PubMedCrossRefGoogle Scholar
  60. Jagusztyn-Krynicka EK, Smorawinska M, Curtiss HI R (1982) Expression of Streptococcus mutans aspartate semialdehyde dehydrogenase gene cloned into plasmid pBR322. J Gen Microbiol 128:1135–1145PubMedGoogle Scholar
  61. Jones GW, Rabert DK, Svinarich DM, Whitfield HJ (1982) Association of adhesive, invasive, and virulent phenotypes of Salmonella typhimurium with autonomous 60-megadalton plasmids. Infect Immun 338:476–486Google Scholar
  62. Killar LM, Eisenstein TM (1985) Immunity to Salmonella typhimurium infection in C3H/HeJ and C3H/HeNCrlBR mice: Studies with an aromatic-dependent live Salmonella typhimurium strain as a vaccine. Infect Immun 47:605–612PubMedGoogle Scholar
  63. Kleckner N, Roth J, Botstein D (1977) Genetic engineering in vivo using translocatable drug-resistance elements. J Mol Biol 116:125–159PubMedCrossRefGoogle Scholar
  64. Komeda Y, Suzuki H, Ishidsu J, Lino T (1975) The role of cAMP in flagellation of Salmonella typhimurium. Mol Gen Genet 142:289–298Google Scholar
  65. LeFever ME, Joel DD (1984) Peyer’s patch epithelium: An imperfect barrier. In: Schiller CM (ed) Intestinal Toxicology. Raven Press New York, p 45Google Scholar
  66. Levine MM, Herrington D, Murphy JR, Morris JG, Losonsky G, Tall B, Lindberg AA, Svenson S, Baqar S, Edwards MF, Stocker B (1987) Safety, infectivity, immunogenicity, and in vivo stability of two attenuated auxotrophic mutant strains of Salmonella typhi, 541Ty and 543Ty, as live oral vaccines in humans. J Clin Invest 79:888–902PubMedCrossRefGoogle Scholar
  67. Levy E, Gaehtgens W (1908) Uber die Verbreitung der typhusbazillen in den lymphdrusen bei typhusleichen. Arb Kaiser Gesundh 28:168–171Google Scholar
  68. Lindberg AA, Robertsson JA (1983) Salmonella typhimurium infection in calves: Cell-mediated and humoral immune reactions before and after challenge with live virulent bacteria in calves given live or inactivated vaccines. Infect Immun 41:751–757PubMedGoogle Scholar
  69. Lockman HA, Curtiss III R (In press) Complementation and selection in vivo for cloned genes restoring mouse virulence to attenuated Salmonella typhimurium. Abstracts Annual Meeting Amer Soc MicrobiolGoogle Scholar
  70. Macrina FL (1984) Molecular cloning of bacterial antigens and virulence determinants. Annu Rev Microbiol 38:193–219PubMedCrossRefGoogle Scholar
  71. Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145:1110–1112PubMedGoogle Scholar
  72. Manning EJ, Baird GD, Jones PW (1986) The role of plasmid genes in the pathogenicity of Salmonella dublin. J Med Microbiol 21:239–243PubMedCrossRefGoogle Scholar
  73. Maskell D, Liew FY, Sweeney K, Dougan G, Hormaeche C (1986) Attenuated Salmonella typhimurium as live oral vaccines and carriers for delivering antigens to the secretory immune system. In: Brown F, Chanock RM, Lerner RA (eds) Vaccines 86: New approaches to immunization developing vaccines against parasitic bacterial and viral diseases. Cold Spring Harbor Laboratory, Cold Spring Harbor, p 213Google Scholar
  74. Maskell D, Sweeney KJ, O’Callaghan D, Hormaeche CE, Liew FY, Dougan G (1987) Salmonella typhimurium aroA mutants as carriers of the Escherichia coli heat-labile enterotoxin B subunit to the murine secretory and systemic immune systems. Microb Pathogen 2:211–221CrossRefGoogle Scholar
  75. McCaughan G, Basten A (1983) Immune system of the gastrointestinal tract. Int Rev Physiol 28:131–157PubMedGoogle Scholar
  76. McFarland WC, Stocker BAD (1987) Effect of different purine auxotrophic mutations on mouse-virulence of a Vi-positive strain of Salmonella dublin and of two strains of Salmonella typhimurium. Microb Pathogen 3:129–141CrossRefGoogle Scholar
  77. Meadow P, Hoare DS, Work E (1957) Interrelationships between lysine and αε-diaminopimelic acid and their derivatives and analogues in mutants of Escherichia coli. Biochemical Journal 66:270–282PubMedGoogle Scholar
  78. Meadow P, Work E (1956) Interrelationships between diaminopimelic acid, lysine and their analogues in mutants of Escherichia coli. Biochemical Journal 64:11pGoogle Scholar
  79. Melton T, Snow LL, Freitag CS, Dobrogosz WJ (1981) Isolation and characterization of cAMP suppressor mutants of Escherichia coli K-12. Mol Gen Genet 182:480–489PubMedCrossRefGoogle Scholar
  80. Michiels T, Popoff MY, Durviaux S, Coynault C, Cornells G (1987) A new method for the physical and genetic mapping of large plasmids: Application to the localization of the virulence determinants on the 90 kb plasmid of Salmonella typhimurium. Microb Pathogen 3:109–116CrossRefGoogle Scholar
  81. Morris Hooke A, Sordelli DO, Cerquetti MC, Bellanti JA (1987) Differential growth characteristics and immunogenicity of tight and coasting temperature-sensitive mutants of Pseudomonas aeruginosa. Infect Immun 55:99–103Google Scholar
  82. Morris Hooke A, Bellanti JA, Oeschger MP (1985) Live bacterial vaccines: New approaches for safety and efficacy. Lancet i:1472–1474Google Scholar
  83. Movva RN, Green P, Nakamura K, Inouye M (1981) Interaction of cAMP receptor protein with the ompA gene, a gene for a major outer membrane protein of Escherichia coli. FEBS Letters 128:186–190PubMedCrossRefGoogle Scholar
  84. Mukkur TKS, McDowell GH, Stocker BAD, Lascelles AK (1987) Protection against experimental salmonellosis in mice and sheep by immunization with aromatic-dependent Salmonella typhimurium. J Med Microbiol 24:11–19PubMedCrossRefGoogle Scholar
  85. Muller M (1912) Der nachweis von fleischvergiftungsbakterien in fleisch und Organen von schlachttieren auf grund systematischer Untersuchungen uber den verlauf und den mechanismus der infektion des tierkorpers mit bakterien der enteritis- und Paratyphus-gruppe, sowie des Typhus; Zugleich ein beitrag zum infektions- und virulenzproblem der bakterien auf experimenteller basis. Centroblatt Bakteriolie Parasitenkunde 62:335–373Google Scholar
  86. Nakamura SY, Sato S, Ohya T, Suzuki S, Ikeda S (1985a) Possible relationship of a 36-megadalton Salmonella enteritidis plasmid to virulence in mice. Infect Immun 47:831–833PubMedGoogle Scholar
  87. Nakamura M, Sato S, Ohya T, Suzuki S, Ikeda S, Koeda T (1985b) Plasmid-cured Salmonella enteritidis ALI 192 as a candidate for a live vaccine. Infect Immun 50:586–587PubMedGoogle Scholar
  88. Nakayama K, Kelly SM, Curtiss III R (1988) Construction of an Asd+ expression-cloning vector: Stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Bio/Technology 6:693–697CrossRefGoogle Scholar
  89. Nikaido H (1961) Galactose-sensitive mutants of Salmonella. I. Metabolism of galactose. Biochim Biophys Acta 48:460–469PubMedCrossRefGoogle Scholar
  90. Nnalue NA, Stocker BAD (1986) Some galE mutants of Salmonella choleraesuis retain virulence. Infect Immun 54:635–640PubMedGoogle Scholar
  91. Ohta M, Kido N, Fuji Y, Arakawa Y, Komatsu T, Kato N (1987) Temperature-sensitive growth mutants as live vaccines against experimental murine salmonellosis. Microbiol Immunol 31:1259–1265PubMedGoogle Scholar
  92. Pardon P, Popoff MY, Coynault C, Marly J, Miras I (1986) Virulence-associated plasmids of Salmonella serotype typhimurium in experimental murine infection. Ann Microbiol (Inst Pasteur) 137B:47–60CrossRefGoogle Scholar
  93. Pastan I, Adhya S (1976) Cyclic adenosine 5’-monophosphate in Escherichia coli. Bacteriol Rev 40:527–551PubMedGoogle Scholar
  94. Pastan I, Perlman R (1970) Cyclic adenosine monophosphate in bacteria. Science 169:339–344PubMedCrossRefGoogle Scholar
  95. Prusiner S, Miller RE, Valentine RC (1972) Adenosine 3′:5′-Cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli. Proc Nat Acad Sci USA 69:2922–2926PubMedCrossRefGoogle Scholar
  96. Rickenberg HV (1974) Cyclic AMP in Prokaryotes. Annu Rev Microbiol 28:353–369PubMedCrossRefGoogle Scholar
  97. Robertsson JA, Lindberg AA, Hoiseth S, Stocker BAD (1983) Salmonella typhimurium infection in calves: Protection and survival of virulent challenge bacteria after immunization with live and inactivated vaccines. Infect Immun 41:742–750PubMedGoogle Scholar
  98. Rhuland LE (1957) Role of αε-diaminopimelic acid in the cellular integrity of Escherichia coli. J Bacteriol 73:778–783PubMedGoogle Scholar
  99. Saier MH, Schmidt MR, Leibowitz M (1978) Cyclic AMP-dependent synthesis of fimbriae in Salmonella typhimurium: Effects of cya and pts mutations. J Bacteriol 134:356–358PubMedGoogle Scholar
  100. Sanderson KE, Hurley JA (1987) Linkage map of Salmonella typhimurium, In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology Edition VI, Vol. 2, American Society for Microbiology, Washington, D.C., p 877Google Scholar
  101. Sanderson, KE, Ross H, Ziegler L, Makela PH (1972) F+, Hfr, and F’ strains of Salmonella typhimurium and Salmonella abony. Bacteriol Rev 36:608–637PubMedGoogle Scholar
  102. Schleifer KH, Kandier, O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedGoogle Scholar
  103. Schmeiger H (1972) Phage P22 mutants with increased or decreased transduction abilities. Mol Gen Genet 119:75–88CrossRefGoogle Scholar
  104. Scholte BJ, Postma PW (1980) Mutation in the crp gene of Salmonella typhimurium which interferes with inducer exclusion. J Bacteriol 141:751–757PubMedGoogle Scholar
  105. Silva-Salinas BA, Rodriguez-Aguayo L, Maldonado-Ballesteros A, Valenzuela-Montero ME, Seoane-Montecinos ME (1985) Propiedades de dos derivados Gal+ de la cepa vacune Salmonella typhi gal E Ty21a. Bol Med Hosp Infant Mex 42:234–239PubMedGoogle Scholar
  106. Smith BP, Reina-Guerra M, Hoiseth SK, Stocker BAD, Babasha F, Johnson E, Merritt F (1984) Aromatic-dependent Salmonella typhimurium as modified live vaccines for calves. Am J Vet Res 45:59–66PubMedGoogle Scholar
  107. Sordelli DO, Cerquetti MC, Bellanti JA, Morris Hooke A (1987) Specific pulmonary defences against Pseudomonas aeruginosa after local immunization with temperature-sensitive mutants. J Gen Microbiol 133:2835–2841PubMedGoogle Scholar
  108. Stevenson G, Manning PA (1985) Galactose epimeraseless (galE) mutant G30 of Salmonella typhimurium is a good potential live oral vaccine carrier for fimbrial antigens. FEMS Microbiol Letters 28:317–321CrossRefGoogle Scholar
  109. Terakado N, Sekizaki T, Hashimoto K, Naitoh S (1983) Correlation between the presence of a fifty-megadalton plasmid in Salmonella dublin and virulence for mice. Infect Imun 41:443–444Google Scholar
  110. Tramont EC, Chung R, Berman S, Keren D, Kapfer C, Formal SB (1984) Safety and antigenicity of typhoid-Shigella sonnei vaccine (Strain 5076–1C). J Infect Dis 149:133–136PubMedCrossRefGoogle Scholar
  111. Weisz-Carrington P, Roux M, McWilliams M, Phillips-Quagliata JM, Lamm ME (1979) Organ and isotype distribution of plasma cells producing specific antibody after oral immunization: Evidence for a generalized secretory immune system. J Immunol 123:1705–1708PubMedGoogle Scholar
  112. Yokota R, Gots JS (1970) Requirement of adenosine 3′,5′-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J Bacteriol 103:513–516PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1989

Authors and Affiliations

  • R. CurtissIII
    • 1
  • S. M. Kelly
    • 1
  • P. A. Gulig
    • 1
  • K. Nakayama
    • 1
  1. 1.Department of BiologyWashington UniversityUSA

Personalised recommendations