Skip to main content

Signal Sensing and Signal Transduction Across the Plasma Membrane

  • Chapter
The Plant Plasma Membrane
  • 217 Accesses

Abstract

This topic is so broad that we have had to severely constrain what is included if the chapter is not to become imponderably large. The plasma membrane, the outer skin of the cell, delimits the boundary between the highly organized and enzyme-rich cytosol and the enzyme-poor and less organized cell wall; any molecular traffic, in or out of the cell must cross the plasma membrane. This traffic may be sensed at the plasma membrane and converted to an entirely new set of information, or it may be modified in transit, or it may pass unhindered. The latter traffic is small and not considered here. Discussion is limited to what is termed signal sensing and stimulus-response coupling although both are difficult to define exactly. Ion flux phenomena in general are not considered here (see Chap. 8) although such fluxes are clearly important information conveyed to the plant cell across the plasma membrane. Signalling by the cell to the cell wall is a relevant phenomenon to cell development and an example of information conveyed from inside to outside. But it has been excluded for reasons of space and is dealt with elsewhere (Chaps. 11, 14, and 15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ABA:

abscisic acid

DAG:

diacylglycerol

IP3 :

inositol-1,4,5-trisphosphate

Pfr :

active phytochrome

Pr :

inactive phytochrome

PI:

phosphatidylinositol

PIP:

phosphatidylinosi- tol-4-phosphate

PIP:

phosphatidylinositol-4,5-bisphosphate

SH:

sulfhydryl group

References

  • Abeles FB (1986) Role of ethylene in Lactuca sativa cv. Grand Rapids seed germination. Plant Physiol 81: 780–787

    PubMed  CAS  Google Scholar 

  • Addicott FT (1982) Abscission. University of California Press, Berkeley

    Google Scholar 

  • Alkon DL, Rasmussen M (1988) A spatial-temporaLmodel of cell activation. Science 239: 998–1004

    PubMed  CAS  Google Scholar 

  • Allan E, Trewavas AJ (1985) Quantitative changes in calmodulin and NAD kinase during early cell development in the root apex of Pisum sativum. Planta 165: 493–501

    CAS  Google Scholar 

  • Anderson SM, Cormier MJ (1978) Calcium dependent regulation of NAD kinase in higher plants. Biochem Biophys Res Commun 84: 595–599

    PubMed  CAS  Google Scholar 

  • Andrejauskas E, Mertel R, Marme D (1985) Specific binding of the calcium antagonist 3H-ver rapamil to membrane fractions from plants. J Biol Chem 260: 5411–5414

    PubMed  CAS  Google Scholar 

  • Bauer WD (1981) Infection of legumes by rhizobia. Annu Rev Plant Physiol 32: 407–449

    CAS  Google Scholar 

  • Bernier G (1986) The flowering process as an example of plastid development. In: Jennings D, Trewavas A J (eds) Plasticity in plants. Company of Biologists. Society for Experimental Biology, pp 257–287

    Google Scholar 

  • Berridge JB (1987) Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56: 159–193

    PubMed  CAS  Google Scholar 

  • Biro RL, Daye S, Serlin B, Terry ME, Datta N, Sopory BK, Roux S (1984) Characterisation of oat calmodulin and radioimmunoassay of its subcellular localisation. Plant Physiol 75: 382–391

    PubMed  CAS  Google Scholar 

  • Blaauw OH, Blaauw-Jansen G, Elgersma O (1976) Determination of hit numbers from dose response curves for phytochrome control of seed germination. Acta Bot Neerl 25: 341–348

    Google Scholar 

  • Blakeley LM, Rodaway SJ, Hollen LB, Croker SG (1972) Control and kinetics of branch root formation in cultured root segments of Haplopappus. Plant Physiol 50: 35–42

    Google Scholar 

  • Blowers DP, Trewavas AJ (1987) Autophosphorylation of plasma membrane bound calcium/calmodulin dependent protein kinase from pea seedlings. Biochem Biophys Res Commun 143: 691–696

    PubMed  CAS  Google Scholar 

  • Blowers D, Trewavas A J (1988) Second messengers: their existence and relationship to protein kinases. In: Boss W, Morre DJ (eds) Second messengers in plant growth and development. Alan R Liss, New York, NY, pp 1–28

    Google Scholar 

  • Boss WF, Massel MO (1985) Polyphosphoinositides are present in plant tissue culture cells. Biochem Biophys Res Commun 132: 1018–1023

    PubMed  CAS  Google Scholar 

  • Briars SA, Kessler F, Evans DE (1988) The calmodulin-stimulated ATPase of maize coleoptiles is a 140,000 Mr polypeptide. Planta 176: 283–285

    CAS  Google Scholar 

  • Brown R, Wightman F (1953) The effect of mature tissue on division in the meristem of the root. J Exp Bot 3: 253–263

    Google Scholar 

  • Brownlee C, Wood JW (1986) A gradient of cytoplasmic free calcium in growing rhizoid cells of Fucus serratus. Nature 320: 624–626

    CAS  Google Scholar 

  • Buller DC, Parker W, Reid JSG (1976) Short chain fatty acids as inhibitors of gibberellin induced amylolysis in barley endosperm. Nature 260: 169–170

    CAS  Google Scholar 

  • Bush DS, Jones RL (1988) Measurement of cytoplasmic calcium in aleurone protoplasts using Indo-1 and Fura-2. Cell Calcium 8: 455–472

    Google Scholar 

  • Callow JA (1982) Molecular aspects of fungal infection. In: Smith H, Grierson D (eds) The molecular biology of plant development. Blackwells, Edinburgh, pp 467–496

    Google Scholar 

  • Callow ME, Evans LV, Callow JA (1982) Fucus. In: Smith H, Grierson D (eds) The molecular biology of plant development. Blackwells, Edinburgh, pp 159–185

    Google Scholar 

  • Carr DJ (1966) Metabolic and hormonal regulation of growth and development. In: Cutter EG (ed) Trends in plant morphogenesis. Plenum, New York, NY, pp 253–283

    Google Scholar 

  • Connett RJA, Hanke DE (1986) Breakdown of phosphatidylinositol in soybean callus. Planta 169: 216–221

    CAS  Google Scholar 

  • Cote GG, Morse MJ, Crain RC, Salter RL (1987) Isolation of soluble metabolites of the phosphatidylinositol cycle from Samanea saman. Plant Cell Rep 6: 352–355

    CAS  Google Scholar 

  • Cox JA (1986) Calcium-calmodulin interaction and cellular function. J Cardiovasc Pharmacol 8 (Suppl 6): 545–551

    Google Scholar 

  • Crombie WML (1962) Thermonasky. In: Bunning E (ed) Encyclopedia of plant physiology, Vol XVII/2. Springer, Berlin Heidelberg New York, pp 15–28

    Google Scholar 

  • Daly JM (1984) The role of recognition in plant disease. Annu Rev Phytopathol 22: 273–307

    CAS  Google Scholar 

  • De Wit PJGM, Hofman AE, Velthuis CM, Toma IMJ (1987) Specificity of active defense responses in plant fungus interactions: tomato-Cladosporium fulvum, a case study. Plant Physiol Biochem 25: 345–351

    Google Scholar 

  • Drew MC, Saker R, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley. J Exp Bot 24: 1189–1202

    CAS  Google Scholar 

  • Drøbak BK, Ferguson IB (1985) Release of Ca2+ from plant hypocotyl microsomes by inositol 1,4,5-triphosphate. Biochem Biophys Res Commun 130: 1241–1246

    PubMed  Google Scholar 

  • Drøbak BK, Allan EF, Comesford JG, Roberts K, Dawson AP (1988) Presence of guanine nucleotide-binding proteins in a plant hypocotyl microsomal fraction. Biochem Biophys Res Commun 150: 899–903

    PubMed  Google Scholar 

  • Ebel J, Grisebach H (1988) Defense strategies of soybean against the fungus Phytophthora megasperma, a molecular analysis. Trends Biochem Sci 13: 23–27

    PubMed  CAS  Google Scholar 

  • Elliott DC, Skinner JD (1986) Calcium-dependent, phospholipid activated protein kinase in plants. Phytochemistry 25: 39–44

    CAS  Google Scholar 

  • Ettlinger C, Lehle L (1988) Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331: 176–178

    PubMed  CAS  Google Scholar 

  • Fukumoto M, Venis MA (1986) ATP-dependent calcium transport in tonoplast vesicles from apple fruits. Plant Cell Physiol 27: 491–497

    CAS  Google Scholar 

  • Gilman AG (1987) G-proteins: tranducers of receptor generated signals. Annu Rev Biochem 56: 615–649

    PubMed  CAS  Google Scholar 

  • Gilroy S, Hughes WA, Trewavas A J (1986) The measurement of intracellular calcium levels in protoplasts from higher plant cells. FEBS Lett 199: 217–221

    CAS  Google Scholar 

  • Gilroy S, Blowers DP, Trewavas AJ (1987a) Calcium: a regulation system emerges in plant cells. Development 100: 181–184

    CAS  Google Scholar 

  • Gilroy S, Hughes WA, Trewavas A J (1987b) Calmodulin antagonists increase free cytosolic calcium in plant protoplasts in vivo. FEBS Lett 212: 133–137

    CAS  Google Scholar 

  • Gilroy S, Hughes WA, Trewavas A J (1989) A comparison between Quin-2 and Aequorin as indicators of cytoplasmic calcium levels in higher plant cell protoplasts. Plant Physiol 90: 482–491

    PubMed  CAS  Google Scholar 

  • Graziana A, Ranjeva R, Boudet AM (1983) Provoked changes in intracellular Ca2+ controlled protein phosphorylation and activity of quinate NAD+ oxidoreductase in carrot cells. FEBS Lett 156: 325–328

    CAS  Google Scholar 

  • Graziana A, Dillenschneider M, Ranjeva R (1984) A calcium binding protein is a regulatory subunit of QORase from dark grown carrot cells. Biochem Biophys Res Commun 125: 774–783

    PubMed  CAS  Google Scholar 

  • Harmon AC, Putnam-Evans C, Cormier MJ (1987) A calcium-dependent but calmodulin-in-dependent protein kinase from soybean. Plant Physiol 83: 830–837

    PubMed  CAS  Google Scholar 

  • Hasunuma K, Funadera K (1987) GTP-binding protein(s) in green plant Lemna paucicostata. Biochem Biophys Res Commun 143: 908–912

    PubMed  CAS  Google Scholar 

  • Haupt W (1972) Localisation of phytochrome within the cell. In: Mitrakos K, Shropshire W (eds) Phytochrome. Academic Press, London, pp 223–243

    Google Scholar 

  • Heim S, Wagner KG (1986) Evidence of phosphorylated phosphatidylinositols in the growth cycle of suspension cultured plant cells. Biochem Biophys Res Commun 134: 1175–1181

    PubMed  CAS  Google Scholar 

  • Hepler PK, Callaham DA (1987) Free calcium increases during anaphase in stamen hair cells of Tradescantia. J Cell Biol 105: 2137–2145

    PubMed  CAS  Google Scholar 

  • Hepler PK, Wayne RO (1985) Calcium and plant development. Annu Rev Plant Physiol 36: 397–439

    CAS  Google Scholar 

  • Heslop-Harrison J (1978) Cellular recognition systems in plants. E Arnold, London, pp 1–58

    Google Scholar 

  • Hetherington AM, Trewavas AJ (1984) Binding of a nitrendipine, a calcium channel blocker, to pea shoot membranes. Plant Sci Lett 35: 109–113

    CAS  Google Scholar 

  • Hollenberg MD, Goren HJ (1986) Ligand-receptor interactions at the cell surface. In: Poste G, Crooke ST (eds) Mechanisms of receptor regulation. Plenum, New York, NY, pp 323–373

    Google Scholar 

  • Hooker HD (1915) Hydrotropism in roots of Lupinus albus. Ann Bot 29: 265–283

    Google Scholar 

  • Hornberg C, Weiler EW (1984) High affinity binding sites for abscisic acid on the plasma membrane of Viciafaba guard cells. Nature 310: 321–322

    CAS  Google Scholar 

  • Ishizawa K, Esashi Y (1985) Gaseous factors involved in the enhanced elongation of rice coleoptiles under water. Plant Cell Environ 7: 239–245

    Google Scholar 

  • Jaffe LF (1969) Localisation in the developing Fucus egg and the general role of localising currents. Adv Morphogen 7: 295–328

    Google Scholar 

  • Jaffe LF (1986) Calcium and morphogenetic fields. In: Calcium and the cell. Ciba Foundation Symposium 122. Wiley Interscience, New York, NY, pp 271–281

    Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Annu Rev Biophys Bioeng 6: 445–476

    PubMed  CAS  Google Scholar 

  • Jaffe MJ, Telewski FW (1983) Thigmomorphogenesis: callose and ethylene in the hardening of mechanically stressed plants. In: Timmerman BN, Steelink C, Loewus FA (eds) Recent advances in phytochemistry, Vol 18. Plenum, New York, NY, pp 79–95

    Google Scholar 

  • Jeffs RA, Northcote DH (1967) The influence of IAA and sugar on the pattern of induced differentiation in plant tissue culture. J Cell Sci 2: 77–88

    PubMed  CAS  Google Scholar 

  • Johnson A (1965) Investigations of the reciprocity rule by means of geotropic and geoelectric measurements. Physiol Plant 18: 945–967

    Google Scholar 

  • Kauss H (1987) Some aspects of calcium dependent regulation in plant metabolism. Annu Rev Plant Physiol 38: 47–72

    CAS  Google Scholar 

  • Keith CH, Raten R, Maxfield FR, Bajer A, Selanski ML (1985) Local cytoplasmic calcium gradients in living mitotic cells. Nature 316: 848–850

    PubMed  CAS  Google Scholar 

  • Knox RB, Williams EG, Dumas C (1986) Pollen, pistil and reproductive function in crop plants. In: Janich J (ed) Plant breeding reviews, Vol 4. Avi Publishing, Westport, CN, pp 9–79

    Google Scholar 

  • Knudson L (1916) Influence of certain carbohydrates on green plants. Cornell Univ Agric Exp Stat Mem 9: 747–813

    Google Scholar 

  • Koshland DE (1987) Switches, thresholds and ultrasensitivity. Trends Biochem Sci 12: 225–229

    CAS  Google Scholar 

  • Koshland DE, Goldbeter A, Stock JB (1982) Amplification and adaptation in regulatory and sensory systems. Science 217: 220–225

    PubMed  CAS  Google Scholar 

  • Lea EJA, Collins JC (1979) The effect of the plant hormone abscisic acid on lipid bilayer membranes. New Phytol 82: 11–18

    CAS  Google Scholar 

  • Lewis J, Slack JMW, Wolpert L (1977) Thresholds in development. J Theor Biol 65: 579–590

    PubMed  CAS  Google Scholar 

  • Lisman JE (1985) A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci USA 82: 3055–3057

    PubMed  CAS  Google Scholar 

  • Lobler M. Klambt D (1985) Localisation of a putative auxin receptor. J Biol Chem 260: 9854–9860

    PubMed  CAS  Google Scholar 

  • Loewus FA, Loewus MW (1983) Myo-inositol: its biosynthesis and metabolism. Annu Rev Plant Physiol 34: 137–161

    CAS  Google Scholar 

  • Maclean N, Hall BK (1987) Cell commitment and differentiation. Cambridge University Press, Cambridge, pp 1–244

    Google Scholar 

  • Melin P-M, Sommarin M, Sandelius AS, Jergil B (1987) Identification of Ca2+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes. FEBS Lett 223: 87–91

    PubMed  CAS  Google Scholar 

  • Miller AJ, Sanders D (1987) Depletion of cytosolic free calcium induced by photosynthesis. Nature 326: 397–400

    CAS  Google Scholar 

  • Moore AL, Akerman KEO (1984) Calcium and plant organelles. Plant Cell Environ 7: 423–429

    CAS  Google Scholar 

  • Morre DJ, Gripshover B, Monroe A, Morre JT (1984) Phosphatidylinositol turnover in isolated soybean membranes stimulated by the synthetic growth hormone 2,4-dinitro-phenoxyacetic acid. J Biol Chem 259: 15364–15368

    PubMed  CAS  Google Scholar 

  • Muto S, Shimogawara K (1985) Calcium and phospholipid-dependent phosphorylation of ribulose-l,5-bisphosphate carboxylase/oxygenase small subunit by a chloroplast envelope- bound protein kinase in situ. FEBS Lett 193: 88–92

    CAS  Google Scholar 

  • Nastainczyk W, Rohrkasten A, Sieber M, Rudolph C, Schachtele C, Marme D, Hofmann F (1987) Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur J Biochem 169: 137–142

    PubMed  CAS  Google Scholar 

  • Newell PC, Europe-Finner GN, Small NV (1987) Signal transduction during amoebal chemotaxis of Dictyostelium discoideum. Microbiol Sci 4: 5–11

    PubMed  CAS  Google Scholar 

  • Nobiling R, Reiss H-D (1987) Quantitative analysis of calcium gradients and activity in growing pollen tubes of Lilium longiflorum. Protoplasma 139: 20–24

    CAS  Google Scholar 

  • Nuccitelli R, Jaffe LF (1975) The pulse current generated by developing fucoid eggs. J Cell Biol 64: 636–643

    PubMed  CAS  Google Scholar 

  • Okazaki Y, Yoshimoto Y, Hirarnote Y, Tazawa M (1987) Turgor regulation and cytoplasmic free Ca2+ in the alga Lamprothanium. Protoplasma 140: 67–71

    Google Scholar 

  • Olah Z, Kiss Z (1986) Occurrence of lipid and phorbol ester activated protein kinase in wheat cells. FEBS Lett 195: 33–37

    CAS  Google Scholar 

  • Paturi FZ (1974) Nature, mother of invention. Pelican, Penguin Books, London, pp 1 - 156

    Google Scholar 

  • Pfaffmann H, Hartmann E, Brightman AO, Morre DJ (1987) Phosphatidylinositol specific phospholipase C of plant stems. Plant Physiol 85: 1151–1155

    PubMed  CAS  Google Scholar 

  • Pierce M, Raschke K (1980) Correlation between loss of turgor and accumulation of abscisic acid in detached leaves. Planta 148: 174–182

    CAS  Google Scholar 

  • Pratt LH (1983) Phytochrome: the protein moiety. Annu Rev Plant Physiol 33: 557–582

    Google Scholar 

  • Quail PH (1982) Intracellular localisation of phytochrome. In: Helene C, Charbier M, Montenay Garestien Th, Lanstriat S (eds) Trends in photobiology. Plenum, New York, NY, pp 485–500

    Google Scholar 

  • Quatrano KS (1978) Development of cell polarity. Annu Rev Plant Physiol 29: 487–510

    CAS  Google Scholar 

  • Ranjeva R, Boudet AM (1987) Phosphorylation of proteins in plants: regulatory effects and potential involvement in stimulus/response coupling. Annu Rev Plant Physiol 38: 73–93

    CAS  Google Scholar 

  • Ranjeva R, Graziana A, Dillenschneider M, Charpentean M, Boudet AM (1986) A novel plant calciprotein as transient subunit of enzymes. In: Trewavas A J (ed) Molecular and cellular aspects of calcium in plant development. Plenum, New York, NY, pp 41–48

    Google Scholar 

  • Rayle DL (1973) Auxin induced hydrogen ion secretion in A vena coleoptiles and its implications. Planta 114: 63–73

    CAS  Google Scholar 

  • Reuter HW (1986) Voltage dependent mechanisms for raising intracellular free calcium concentration via calcium channels. In: Cheung WY (ed) Calcium and the cell. Ciba Foundation Symposium 122. Wiley Interscience, London, pp 5–23

    Google Scholar 

  • Roberts DM, Lokas TJ, Harrington HM, Watterson DM (1986) Molecular mechanisms of calmodulin action. In: Trewavas A J (ed) Molecular and cellular aspects of calcium in plant development. Plenum, New York, NY, pp 11–18

    Google Scholar 

  • Robinson C, Larsson C, Buckhout TJ (1988) Identification of a calmodulin-stimulated (Ca2+ + Mg2+)-ATPase in a plasma membrane fraction isolated from maize (Zea mays) leaves. Physiol Plant 72: 177–184

    CAS  Google Scholar 

  • Roux SJ, Wayne RO, Datta N (1986) Role of calcium ions in phytochrome responses: an update. Physiol Plant 66: 344–348

    PubMed  CAS  Google Scholar 

  • Sabnis DD, McEuen AR (1986) Calcium and calcium binding proteins in phloem. In: Trewavas AJ (ed) Molecular and cellular aspects of calcium in plant development. Plenum, New York, pp 33–40

    Google Scholar 

  • Sandelius AS, Morre DJ (1987) Characteristics of a phosphatidylinositol exchange activity of soybean microsomes. Plant Physiol 84: 1022–1027

    PubMed  CAS  Google Scholar 

  • Sandelius AS, Sommarin M (1986) Phosphorylation of phosphatidylinositols in isolated plant membranes. FEBS Lett 201: 282–286

    CAS  Google Scholar 

  • Schäfer A, Bygrave R, Matzenaver S, Marme D (1985) Identification of a calcium- and phospholipid-dependent kinase in plant tissue. FEBS Lett 208: 25–29

    Google Scholar 

  • Schauf CL, Wilson KJ (1987) Effect of abscisic acid on K+ channels in Vicia faba guard cell protoplasts. Biochem Biophys Res Commun 145: 284–290

    PubMed  CAS  Google Scholar 

  • Schrank AR (1959) Electronasty and electrotropism. In: Bunning E (ed) Encyclopedia of plant physiology, Vol. 17, Springer, Berlin Gottingen Heidelberg, pp 148–168

    Google Scholar 

  • Schroeder JI, Raschke K, Neher E (1987) Voltage dependence of K+ channels in guard cell protoplasts. Proc Natl Acad Sci USA 84: 4108–4112

    PubMed  CAS  Google Scholar 

  • Schumaker S, Sze H (1987) Inositol-1,4,5-P3 releases Ca2+ from vacuolar membrane residues of oat roots. J Biol Chem 262: 3944–3946

    PubMed  CAS  Google Scholar 

  • Sievers A, Hensel W (1982) Nature of graviperception. In: Wareing PF (ed) Plant growth substances. Academic Press, London, pp 497–506

    Google Scholar 

  • Smart C, Longlang J, Trewavas A J (1987) The turion: a biological probe for the molecular action of abscisic acid. In: Fox JE, Jacobs M (eds) Molecular biology of plant growth control. Alan R Liss, New York, NY, pp 345–359

    Google Scholar 

  • Smith JA, Martin L (1973) Do cells cycle? Proc Natl Acad Sci USA 70: 1263–1267

    PubMed  CAS  Google Scholar 

  • Sommarin M, Sandelius AS (1988) Phosphatydylinositol and phosphatidylinositol-phosphate kinases in plant plasma membranes. Biochim Biophys Acta 958: 268–278

    CAS  Google Scholar 

  • Song PG (1984) Phytochrome. In: Wilkins MB (ed) Advanced plant physiology. Pitman, Bath, pp 354–375

    Google Scholar 

  • Speth V, Otto V, Schafer E (1986) Intracellular localisation of phytochrome in oat coleoptiles by electron microscopy. Planta 168: 299–304

    CAS  Google Scholar 

  • Spurr AR (1957) The effect of boron on cell wall structure in celery. Am J Bot 44: 637–650

    CAS  Google Scholar 

  • Stickler L, Penel C, Greppin H (1981) Calcium requirement for the secretion of peroxidases by plant cell suspensions. J Cell Sci 48: 354–353

    Google Scholar 

  • Tanada T (1968) A rapid photoreversible response of barley root tips in the presence of 3-indoleacetic acid. Proc Natl Acad Sci USA 59: 376–380

    PubMed  CAS  Google Scholar 

  • Tong-Ling LC, Wolniak SM (1987) Lithium induces cell plate dispersion during cytokinesis in Tradescantia. Protoplasm 141: 56–63

    Google Scholar 

  • Tranh Thanh Van K (1981) Control of morphogenesis in in vitro cultures. Annu Rev Plant Physiol 32: 291–313

    Google Scholar 

  • Tranh Thanh Van K, Toubarb P, Cousson A, Darvill AG, Gollin DJ, Chelf P, Albersheim P (1985) Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharins. Nature 314: 615–617

    Google Scholar 

  • Trewavas AJ (1982) Possible control points in plant development. In: Smith H, Grierson D (eds) The molecular biology of plant development. Blackwells, Edinburgh, pp 7–28

    Google Scholar 

  • Trewavas AJ (1986a) Understanding the control of development and the role of growth substances. Aust J Plant Physiol 13: 447–457

    CAS  Google Scholar 

  • Trewavas A J (1986b) Resource allocation under poor growth conditions. A Major role for growth substances in development plasticity. In: Jennings DH, Trewavas AJ (eds) Plasticity in plants. Company of Biologists, Cambridge, pp 31–37

    Google Scholar 

  • Trewavas A J (1987a) Sensitivity and sensory adaptation in growth substance responses. In: Lenton JR, Jackson MB, Atkin RK (eds) Hormone action in plant development. A critical appraisal. Butterworths, London, p 19–37

    Google Scholar 

  • Trewavas A J (1987b) Timing and memory processes in seed embryo dormancy — a conceptual paradigm for plant development questions. Bioessays 6: 87–92

    Google Scholar 

  • Trewavas AJ, Jennings D (1986) Introduction. In: Jennings D, Trewavas A J (eds) Plasticity in plants. Company of Biologists, Cambridge, pp 1–4

    Google Scholar 

  • Trewavas AJ, Kelly P, Sexton R (1984) Polarity, calcium and abscission: molecular bases for developmental plasticity in plants. J Embryol Exp Morphol 83 (suppl): 179–195

    PubMed  CAS  Google Scholar 

  • Tsien RY, Poenie M (1986) Fluorescence ratio imaging: a new window on intracellular signalling. Trends Biochem Sci 11: 450–455

    CAS  Google Scholar 

  • Tucker EB (1988) Inositol bisphosphate and inositol trisphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 174: 358–363

    CAS  Google Scholar 

  • Tucker DJ, Mansfield TA (1971) A simple bioassay for detecting antitranspirant activity of naturally-occurring compounds such as abscisic acid. Planta 98: 157–163

    CAS  Google Scholar 

  • Venis M (1985) Hormone binding sites in plants. Longman, New York, NY, pp 1–190

    Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296: 647–651

    PubMed  CAS  Google Scholar 

  • Wilson BF, Archer RR (1977) Reaction wood: induction and mechanical action. Annu Rev Plant Physiol 28: 23–43

    Google Scholar 

  • Zimmermann U (1977) Cell turgor pressure regulation and turgor pressure-mediated transport processes. Symp Soc Exp Biol 31: 117–154

    PubMed  CAS  Google Scholar 

  • Zimmermann U, Beckers F (1978) Generation of action potentials in Chara corollina by turgor pressure changes. Planta 138: 173–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gilroy, S., Trewavas, A. (1989). Signal Sensing and Signal Transduction Across the Plasma Membrane. In: Larsson, C., Møller, I.M. (eds) The Plant Plasma Membrane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74522-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74522-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74524-9

  • Online ISBN: 978-3-642-74522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics