Skip to main content

Plasma Membrane ATPase

  • Chapter

Abstract

The existence of an ATP-driven proton pump in plant plasma membranes was suggested two decades ago from physiological studies on active transport (Poole 1978) and by measurement of electrical potentials (Spanswick 1981) across the plasma membrane of whole plant cells (Chap. 8). The pioneering work of Hodges et al. (1972) represented the first step toward the molecular characterization of this pump. These authors demonstrated the presence in partially purified plant plasma membranes of a K+-stimulated ATPase distinct from the mitochondrial and chloroplast ATPases. During the last decade the proton-pumping activity of this enzyme has been demonstrated in isolated plasma membrane vesicles (Sze 1985, see Chap. 7) and the ATPase has been partially purified and reconstituted in liposomes catalyzing ATP-driven proton transport (Serrano 1983). These studies also demonstrated similarities between ATPase enzymes from plant and fungal plasma membrane, which together constitute a novel group of ion-pumping ATPase (Serrano 1984a, 1985). Table 1 summarizes the properties of the two types of ion-pumping ATPases identified in biological membranes (Pedersen and Carafoli 1987a,b). The fungal and plant plasma membrane ATPases have the same structure and reaction mechanism as the other (E-P) ATPases involved in Na+, K+, and Ca2+ transport. On the other hand, they operate as electrogenic proton pumps, like most of the (F0F1) ATPases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison R (1986) Primary structure of the Neurospora plasma membrane H+-ATPase deduced from the gene sequence. J Biol Chem 261: 14896–14901

    PubMed  CAS  Google Scholar 

  • Addison R, Scarborough GA (1982) Conformational changes of the Neurospora plasma membrane H+ -ATPase during its catalytic cycle. J Biol Chem 257: 10421–10426

    PubMed  CAS  Google Scholar 

  • Ahlers J (1984) Effect of different salts on the plasma membrane ATPase and on proton transport in yeast. Can J Biochem Cell Biol 62: 998–1005

    CAS  Google Scholar 

  • Amory A, Foury F, Goffeau A (1980) The purified plasma membrane ATPase of the yeast Schizosaccharomyces pombe forms a phosphorylated intermediate. J Biol Chem 255: 9353–9357

    PubMed  CAS  Google Scholar 

  • Andersen JP, Vilsen B, Collins JH, J0rgensen PL (1986) Localization of EIL, conformational transitions of sarcoplasmic reticulum Ca-ATPase by tryptic cleavage and hydrophobic labeling. JMembr Biol 93: 85–92

    CAS  Google Scholar 

  • Anthon GE, Spanswick RM (1986) Purification and properties of the H+-translocating ATPase from the plasma membrane of tomato roots. Plant Physiol 81: 1080–1085

    PubMed  CAS  Google Scholar 

  • Balke NE, Hodges TK (1975) Plasma membrane adenosine triphosphatase of oat roots. Activation and inhibition by Mg and ATP. Plant Physiol 55: 83–86

    Google Scholar 

  • Ball JH, Williams L, Hall JL (1987) Effect of SW26 and erythrosin B on ATPase activity and related processes in Ricinus cotyledons and cucumber hypocotyls. Plant Sci 52: 1–5

    CAS  Google Scholar 

  • Bennet AB, O’Neill SD, Eilman M, Spanswick RM (1985) H+-ATPase from storage tissue of Beta vulgaris. III Modulation of ATPase activity by reaction substrates and products. Plant Physiol 78: 495–499

    Google Scholar 

  • Bennet JP, Smith G A, Houslay MD, Hesketh TR, Metcalfe JC, Warren GB (1978) The phospholipid head group specificity of an ATP-dependent calcium pump. Biochim Biophys Acta 513: 310–320

    Google Scholar 

  • Bidwai AP, Takemoto JY (1987) Bacterial phytotoxin, syringomycin, induces a protein-kinase mediated phosphorylation of red beet plasma membrane polypeptides. Proc Natl Acad Sci USA 84: 6755–6759

    PubMed  CAS  Google Scholar 

  • Bidwai AP, Zhang L, Bachmann RC, Takemoto JY (1987) Mechanism of action of Pseudomonas syringae phytotoxin, syringomycin. Stimulation of red beet plasma membrane ATPase activity. Plant Physiol 83: 39–43

    Google Scholar 

  • Blein JP, De Cherade X, Bergon M, Calmon JP, Scalla R (1986) Inhibition of adenosine triphosphatase activity from a plasma membrane fraction of Acer pseudoplatanus cells by 2,2,2-trichloroethyl 3,4-dichlorocarbanilate. Plant Physiol 80: 782–785

    PubMed  CAS  Google Scholar 

  • Blein JP, Martinez J, Bergon M, Calmon JP, Scalla R (1987) Inhibition of adenosine triphosphatase activity from a plasma membrane fraction of Acer pseudoplatanus cells by carbanilate derivatives. Plant Physiol 83: 469–471

    PubMed  CAS  Google Scholar 

  • Borst-Pauwels GWFH, Theuvenet APR, Stols ALH (1983) All-or-none interactions of inhibitors of the plasma membrane ATPase with Saccharomyces cerevisiae. Biochim Biophys Acta 732: 186–192

    PubMed  CAS  Google Scholar 

  • Brandl CJ, Green NM, Korczak B, MacLennan DH (1986) Two Ca-ATPase genes: homologies and mechanistic implications of deduced amino acid sequence. Cell 44: 597–607

    PubMed  CAS  Google Scholar 

  • Briars SA, Kessler F, Evans DE (1988) The calmodulin-stimulated ATPase of maize coleoptiles is a 140,000 Mr polypeptide. Planta 176: 283–285

    CAS  Google Scholar 

  • Briskin DP, Leonard RT (1982) Partial characterization of a phosphorylated intermediate associated with the plasma membrane ATPase of corn roots. Proc Natl Acad Sci USA 79: 6922–6926

    PubMed  CAS  Google Scholar 

  • Briskin DP, Poole RJ (1983a) Role of magnesium in the plasma membrane ATPase of red beet. Plant Physiol 71: 969–971

    PubMed  CAS  Google Scholar 

  • Briskin DP, Poole RJ (1983b) Evidence for a beta-aspartyl-phosphate residue in the phosphorylated intermediate of the red beet plasma membrane ATPase. Plant Physiol 72: 1133–1135

    PubMed  CAS  Google Scholar 

  • Briskin DP, Thornley WR, Roti-Roti JL (1985) Target molecular size of the red beet plasma membrane ATPase. Plant Physiol 78: 642–644

    PubMed  CAS  Google Scholar 

  • Carafoli E, Zurini M (1982) The Ca2 +-pumping ATPase of plasma membranes. Purification, reconstitution and properties. Biochim Biophys Acta 683: 279–301

    Google Scholar 

  • Chadwick CC, Goormaghtigh E, Scarborough GA (1987) A hexameric form of the Neurospora crassa plasma membrane H+-ATPase. Arch Biochem Biophys 252: 348–356

    PubMed  CAS  Google Scholar 

  • Cid A, Vara F, Serrano R (1987) Inhibition of the proton pumping ATPases of yeast and oat roots plasma membranes by dicyclohexylcarbodiimide. Arch Biochem Biophys 252: 496–500

    PubMed  CAS  Google Scholar 

  • Clement JD, Ghislain M, Dufour JP, Scalla R (1986) Immunodetection of a 90 000-Mr polypeptide related to yeast plasma membrane ATPase in plasma membranes from maize shoots. Plant Sci 45: 43–50

    CAS  Google Scholar 

  • Cocucci MC (1986) Inhibition of plasma membrane and tonoplast ATPases by erythrosin B. Plant Sci 47: 21–27

    CAS  Google Scholar 

  • Cocucci MC, Marre E (1984) Lysophosphatidylcholine-activated, vanadate inhibited, Mg-ATPase from radish microsomes. Biochim Biophys Acta 771: 42–52

    Google Scholar 

  • Cocucci MC, Marre E (1986) Erythrosin B as an effective inhibitor of electrogenic H+ extrusion. Plant Cell Environ 9: 677–679

    CAS  Google Scholar 

  • Cocucci MC, De Michelis MI, Pugliarello MC, Rasi-Caldogno F (1985) Reconstitution of proton pumping activity of a plasma membrane ATPase purified from radish. Plant Sci Lett 37: 189–193

    CAS  Google Scholar 

  • Dieter P, Marme D (1980) Calmodulin activation of plant microsomal calcium uptake. Proc Natl Acad Sci USA 77: 7311–7314

    PubMed  CAS  Google Scholar 

  • Dieter P, Marme D (1981) A calmodulin-dependent, microsomal ATPase from corn (Zea mays L.). FEBS Lett 125: 245–248

    CAS  Google Scholar 

  • Downes CP, Michell RH (1985) Inositol phospholipid breakdown as a receptor controlled generator of second messengers. In: Cohen P, Houslay MD (eds) Molecular mechanisms of transmembrane signalling. Elsevier, Amsterdam, pp 3–56

    Google Scholar 

  • Ettlinger C, Lehle L (1988) Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331: 176–178

    PubMed  CAS  Google Scholar 

  • Eytan GD (1982) Use of liposomes for reconstitution of biological functions. Biochim Biophys Acta 694: 185–202

    PubMed  CAS  Google Scholar 

  • Farley RA, Faller LD (1985) The amino acid sequence of an active site peptide from the H,K-ATPase of gastric mucosa. J Biol Chem 260: 3899–3901

    PubMed  CAS  Google Scholar 

  • Felle H, Brummer B, Bertl A, Parish RW (1986) Indole-3-acetic acid and fusicoccin cause cytosolic acidification of corn coleoptile cells. Proc Natl Acad Sci USA 83: 8992–8995

    PubMed  CAS  Google Scholar 

  • Furst P, Solioz M (1986) The vanadate-sensitive ATPase of Streptococcus faecalis pumps potassium in a reconstituted system. J Biol Chem 261: 4302–4308

    PubMed  CAS  Google Scholar 

  • Gallagher SR, Leonard RT (1982) Effect of vanadate, molybdate and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots. Plant Physiol 70: 1335–1340

    PubMed  CAS  Google Scholar 

  • Gallagher SR, Leonard RT (1987) Electrophoretic characterization of a detergent-treated plasma membrane fraction from corn roots. Plant Physiol 83: 265–271

    PubMed  CAS  Google Scholar 

  • Ghislain M, Schlesser A, Goffeau A (1987) Mutations of a conserved glycine modifies the vanadate sensitivity of the plasma membrane H+ -ATPase from Schizosaccharomyces pombe. J Biol Chem 262: 17549–17555

    PubMed  CAS  Google Scholar 

  • Goormaghtigh E, Chadwick C, Scarborough GA (1986) Monomers of the Neurospora plasma membrane H+-ATPase catalyze efficient proton translocation. J Biol Chem 261: 7466–7471

    PubMed  CAS  Google Scholar 

  • Graf P, Weiler EW (1989) ATP-driven Ca2+ transport in sealed plasma membrane vesicles prepared by aqueous two-phase partitioning from leaves of Commelina communis. Physiol Plant 75: 469–478

    Google Scholar 

  • Hager KM, Mandala SM, Davenport JW, Speicher DW, Benz EJ, Slayman CW (1986) Amino acid sequence of the plasma membrane H+ -ATPase of Neurospora crassa: deduction from genomic and cDNA sequences. Proc Natl Acad Sci USA 83: 7693–7697

    PubMed  CAS  Google Scholar 

  • Hammes GG (1982) Unifying concept for the coupling between ion pumping and ATP hydrolysis or synthesis. Proc Natl Acad Sci USA 79: 6881–6884

    PubMed  CAS  Google Scholar 

  • Hastings DF, Reynold JA, Tanford C (1986) Circular dicroism of the two major conformational states of mammalian ( Na + K) ATPase. Biochim Biophys Acta 860: 566–569

    Google Scholar 

  • Hennessey JP, Scarborough GA (1988) Secondary structure of the Neurospora crassa plasma membrane H+ -ATPase as estimated by circular dichroism. J Biol Chem 263: 3123–3130

    PubMed  CAS  Google Scholar 

  • Hesse JE, Wieczorek L, Altendorf K, Reicin AS, Dorus E, Epstein W (1984) Sequence homology between two membrane transport ATPases, the Kdp-ATPase of Escherichia coli and the Ca-ATPase of sarcoplasmic reticulum. Proc Natl Acad Sci USA 81: 4746–4750

    PubMed  CAS  Google Scholar 

  • Hetherington A, Trewavas A (1982) Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett 145: 67–71

    CAS  Google Scholar 

  • Hodges TK (1976) ATPases associated with membranes of plant cells. In: Liittge U, Pitman MG (eds) Encyclopedia of plant physiology, New Series, vol 2, Part A, Springer, Berlin Heidelberg New York, pp 260–283

    Google Scholar 

  • Hodges TK, Leonard RT, Bracker CE, Keenan TW (1972) Purification of an ion-stimulated ATPase from plant roots: association with plasma membranes. Proc Natl Acad Sci USA 69: 3307–3311

    PubMed  CAS  Google Scholar 

  • Hollander VP (1971) Acid phosphatases. In: Boyer PD (ed) The enzymes, 3rd edn, vol IV. Academic Press, New York, pp 449–498

    Google Scholar 

  • Jørgensen PL (1982) Mechanism of the Na+,K+ -pump. Protein structure and conformations of the pure (Na+ + K+)-ATPase. Biochim Biophys Acta 694: 27–68

    PubMed  Google Scholar 

  • Kasamo K (1986) Purification and properties of the plasma membrane H+ -translocating adenosine triphosphatase of Phaseolus mungo L. roots. Plant Physiol 80: 818–824

    PubMed  CAS  Google Scholar 

  • Kasamo K (1987) Reconstitution and characterization of H-translocating ATPase from the plasma membrane of Phaseolus mungo L. roots. Plant Cell Physiol 28: 19–28

    CAS  Google Scholar 

  • Kasamo K, Nouchi I (1987) The role of phospholipids in plasma membrane ATPase activity in Vigna radiata L. (mung bean) roots and hypocotyls. Plant Physiol 83: 323–328

    PubMed  CAS  Google Scholar 

  • Katz AM (1981) Regulation of calcium transport in the cardiac sarcoplasmic reticulum by cyclic-AMP-dependent protein kinase. In: Rosen OM, Krebs EG (eds) Protein phosphorylation. Cold-Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 849–854

    Google Scholar 

  • Katz DB, Sussman MR (1987) Inhibition and labeling of the plant plasma membrane H+ -ATPase with N-ethylmaleimide. Plant Physiol 83: 977–981

    PubMed  CAS  Google Scholar 

  • Katz DB, Sussman MR, Mierzwa RJ, Evert RF (1988) Cytochemical localization of ATPase activity in oat root localizes a plasma membrane-associated soluble phosphatase, not the proton pump. Plant Physiol 86: 841–847

    PubMed  CAS  Google Scholar 

  • Kawakami K, Noguchi S, Noda M, Takahashi H, Ohta T, Kawamura M, Nojima H, Nagano K, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1985) Primary structure of the a-subunit of Torpedo californica ( Na + K) ATPase deduced from cDNA sequence. Nature 316: 733–736

    Google Scholar 

  • Kimelberg HK, Papahadjopoulos D (1972) Phospholipid requirements for (Na + K) ATPase activity: head group specificity and fatty acid fluidity. Biochim Biophys Acta 282: 277–292

    PubMed  CAS  Google Scholar 

  • Larsson C, Kjellbom P, Widell S, Lundborg T (1984) Sidedness of plant plasma membrane vesicles purified by partition in aqueous two-phase systems. FEBS Lett 171: 271–276

    CAS  Google Scholar 

  • Leonard RT (1983) Potassium transport and the plasma membrane ATPase in plants. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilization by plants. Academic Press, New York, pp 71–86

    Google Scholar 

  • Leonard RT, Hodges TK (1973) Characterization of plasma membrane-associated ATPase activity of oat roots. Plant Physiol 52: 6–12

    PubMed  CAS  Google Scholar 

  • Macara IG (1980) Vanadium, an element in search of a role. Trends Biochem Sci 5: 92–94

    CAS  Google Scholar 

  • Malpartida F, Serrano R (1981) Proton translocation catalyzed by the purified yeast plasma membrane ATPase reconstituted in liposomes. FEBS Lett 131: 351–354

    CAS  Google Scholar 

  • Marre E (1979) Integration of solute transport in cereals. In: Laidman DL, Wyn Jones RG (eds) Recent advances in the biochemistry of cereals. Academic Press, New York, pp 3–25

    Google Scholar 

  • Meade JC, Shaw J, Gallagher G, Lemaster S, Stringer JR (1987) Structure and expression of a tandem gene pair in Leishmania donovani that encodes a protein structurally homologous to eukaryotic cation-transporting ATPases. Mol Cell Biol 7: 3937–3946

    PubMed  CAS  Google Scholar 

  • Melgunov VI, Akimova EI (1980) The dependence for reactivation of lipid-depleted Ca2+ -ATPase of sarcoplasmic reticulum by non-ionic detergents on their hydrophile/lipophile balance. FEBS Lett 121: 235–238

    PubMed  CAS  Google Scholar 

  • Meyerowitz EM (1987) Arabidopsis thaliana. Annu. Rev Genet 21:93–111

    Google Scholar 

  • Mitchell P (1981) Bioenergetic aspects of unity in biochemistry: evolution of the concept of ligand conduction in chemical, osmotic and chemiosmotic reaction mechanisms. In: Semenza G (ed) Of oxygen, fuels and living matter. Part 1. John Wiley, New York, chap 1

    Google Scholar 

  • Nakamoto RK, Inesi G (1986) Retention of ellipticity between enzymatic states of the Ca-ATPase of sarcoplasmic reticulum. FEBS Lett 194: 258–262

    PubMed  CAS  Google Scholar 

  • Ohta T, Nagano K, Yoshida M (1986) The active site structure of Na+ /K+ -transporting ATPase: location of the 5′-(p-fluorosulfonyl)benzoyladenosine binding site and soluble peptides released by trypsin. Proc Natl Acad Sci USA 83: 2071–2075

    PubMed  CAS  Google Scholar 

  • Oleski NA, Bennett AB (1987) H+-ATPase activity from storage tissue of Beta vulgaris. IV. N,N′-dicyclohexylcarbodiimide binding and inhibition of the plasma membrane H+ -ATPase. Plant Physiol 83: 569–572

    PubMed  CAS  Google Scholar 

  • Ovchinnikov YA, Modyanov NN, Broude NE, Petrukhin KE, Grishin AV, Arzamazova NM, Aldanova NA, Monastyrskaya GS, Sverdlov ED (1986) Pig kidney Na,K-ATPase. Primary structure and spatial organization. FEBS Lett 201: 237–245

    Google Scholar 

  • Ovchinnikov YA, Dzhandzugazyan KN, Lutsenko SV, Mustayev AA, Modyanov NN (1987a) Affinity modification of Iv-form of Na+,K+ -ATPase revealed Asp-710 in the catalytic site. FEBS Lett 217: 111–116

    PubMed  CAS  Google Scholar 

  • Ovchinnikov YA, Arzamazova NM, Arystarkhova EA, Gevondyan NM, Aldanova NA, Modyanov NN (1987b) Detailed structural analysis of exposed domains of membrane-bound Na+,K+- ATPase. A model of transmembrane arrangement. FEBS Lett 217: 269–274

    Google Scholar 

  • Palmgren MG, Sommarin M, Jtfrgensen PL (1988) Substrate stabilization of lysophosphatidyl-choline-solubilized plasma membrane H+-ATPase from oat roots. Physiol Plant 74: 20–25

    CAS  Google Scholar 

  • Pardo JM, Serrano R (1989) Structure of a plasma membrane H+-ATPase gene from the plant Arabidopsis thaliana. J Biol Chem 264: 8557–8562

    PubMed  CAS  Google Scholar 

  • Pedersen PL, Carafoli E (1987a) Ion motive ATPases. I. Ubiquity, properties and significance to cell function. Trends Biochem Sci 12: 146–150

    Google Scholar 

  • Pedersen PL, Carafoli E (1987b) Ion motive ATPases. II. Energy coupling and work output. Trends Biochem Sci 12: 186–189

    Google Scholar 

  • Perlin DS, Brown CL (1987) Identification of structurally distinct catalytic intermediates of the H+-ATPase from yeast plasma membranes. J Biol Chem 262: 6788–6794

    PubMed  CAS  Google Scholar 

  • Perlin DS, San Francisco MJD, Slayman CW, Rosen BP (1986) Proton-ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli. Arch Biochem Biophys 248: 53–61

    PubMed  CAS  Google Scholar 

  • Poole RJ (1978) Energy coupling for membrane transport. Annu Rev Plant Physiol 29: 437–460

    CAS  Google Scholar 

  • Portillo F, Serrano R (1988) Dissection of functional domains of the yeast proton-pumping ATPase by directed mutagenesis. EMBO J 7: 1793–1798

    PubMed  CAS  Google Scholar 

  • Rasi-Caldogno F, De Michelis MI, Pugliarello MC (1982) Active transport of Ca2+ in membrane vesicles from pea. Evidence for a H+/Ca2+ antiport. Biochim Biophys Acta 693: 287–295

    CAS  Google Scholar 

  • Rasi-Caldogno F, De Michelis MI, Pugliarello MC, Marre E (1986) H+-pumping driven by the plasma membrane ATPase in membrane vesicles from radish: stimulation by fusicoccin. Plant Physiol 82: 121–125

    PubMed  CAS  Google Scholar 

  • Rasi-Caldogno F, Pugliarello MC, De Michelis MI (1987) The Ca2+-transport ATPase of plant plasma membrane catalyzes an nH+ /Ca2+ exchange. Plant Physiol 83: 994–1000

    PubMed  CAS  Google Scholar 

  • Rayle DL, Cleland RE (1977) Control of plant cell enlargement by hydrogen ions. Curr Top Dev Biol 11: 187–214

    PubMed  CAS  Google Scholar 

  • Rincon M, Hanson JB (1986) Controls on calcium ion fluxes in injured or shocked corn root cells: importance of proton pumping and cell membrane potential. Physiol Plant 67: 576–583

    CAS  Google Scholar 

  • Robinson C, Larsson C, Buckhout TJ (1988) Identification of a calmodulin-stimulated (Ca2+ 4-Mg2 +)-ATPase in a plasma membrane fraction isolated from maize (Zea mays) leaves. Physiol Plant 72: 177–184

    CAS  Google Scholar 

  • Roelofsen B, Van Deenen LLM (1973) Lipid requirement of membrane-bound ATPase. Studies on human erythrocyte ghosts. Eur J Biochem 40: 245–257

    Google Scholar 

  • Sachs G, Faller LD, Rabon E (1982) Proton/hydroxyl transport in gastric and intestinal epithelia. J Membr Biol 64: 123–133

    PubMed  CAS  Google Scholar 

  • Scalla R, Amory A, Rigaud J, Goffeau A (1983) Phosphorylated intermediate of a transport ATPase and activity of protein kinase in membranes from corn roots. Eur J Biochem 132: 525–530

    PubMed  CAS  Google Scholar 

  • Scarborough GA, Addison R (1984) On the subunit composition of the Neurospora plasma membrane H+-ATPase. J Biol Chem 259: 9109–9114

    PubMed  CAS  Google Scholar 

  • Schaller GE, Sussman MR (1988a) Phosphorylation of the plasma membrane H+ -ATPase of oat roots by a calcium-stimulated protein kinase. Planta 173: 509–518

    CAS  Google Scholar 

  • Schaller GE, Sussman MR (1988b) Isolation and sequence of tryptic peptides from the proton-pumping ATPase of the oat root plasma membrane. Plant Physiol 86: 512–516

    PubMed  CAS  Google Scholar 

  • Schroeder JI, Hedrich R, Fernandez JM (1984) Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312: 361–362

    CAS  Google Scholar 

  • Schroeder JI, Raschke K, Neher E (1987) Voltage-sensitive K+ channels in guard cell protoplasts. Proc Natl Acad Sci USA 84: 4107–4112

    Google Scholar 

  • Scott TL (1985) Distances between the functional sites of the (Ca2+ +Mg2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 260: 14421–14423

    PubMed  CAS  Google Scholar 

  • Serrano R (1983) Purification and reconstitution of the proton-pumping ATPase of fungal and plant plasma membranes. Arch Biochem Biophys 227: 1–8

    PubMed  CAS  Google Scholar 

  • Serrano R (1984a) Plasma membrane ATPase of fungi and plants as a novel type of proton pump. Curr Top Cell Regul 23: 87–126

    PubMed  CAS  Google Scholar 

  • Serrano R (1984b) Purification of the proton pumping ATPase from plant plasma membranes Biochem Biophys Res Commun 121: 735–740

    CAS  Google Scholar 

  • Serrano R (1985) Plasma membrane ATPase of plants and fungi. CRC, Boca Raton, FL

    Google Scholar 

  • Serrano R (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta 947: 1–28

    PubMed  CAS  Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na + K), K and Ca ATPases. Nature 319: 689–693

    Google Scholar 

  • Serrano R, Montesinos C, Sanchez J (1988) Lipid requirements of the plasma membrane ATPases from oat roots and yeast. Plant Sci 56: 117–122

    CAS  Google Scholar 

  • Shigekawa M, Wakabayashi S (1985) Sidedness of K+ activation of calcium transport in the reconstituted sarcoplasmic reticulum calcium pump. J Biol Chem 260: 11679–11687

    PubMed  CAS  Google Scholar 

  • Shull GH, Lingrel JB (1986) Molecular cloning of the rat stomach ( H + K) ATPase. J Biol Chem 261: 16788–16791

    Google Scholar 

  • Shull GE, Schwartz A, Lingrel JB (1985) Amino-acid sequence of the catalytic subunit of the ( Na + K) ATPase deduced from a complementary DNA. Nature 316: 691–695

    Google Scholar 

  • Shull GE, Greeb J, Lingrel JB (1988) Molecular cloning of three distinct forms of the Na,K-ATPase a-subunit from rat brain. Biochemistry 25: 8125–8132

    Google Scholar 

  • Solioz M, Mathews S, Furst P (1987) Cloning of the K-ATPase of Strepcoccus faecalis. Structural and evolutionary implications of its homology to the KdpB-protein of Escherichia coll J Biol Chem 262: 7358–7362

    PubMed  CAS  Google Scholar 

  • Spanswick RM (1981) Electrogenic ion pumps. Annu Rev Plant Physiol 32: 267–289

    CAS  Google Scholar 

  • Stroobant P, Scarborough GA (1979) Active transport of calcium in Neurospora plasma membrane vesicles. Proc Natl Acad Sci USA 76: 3102–3107

    PubMed  CAS  Google Scholar 

  • Surowy TK, Sussman MR (1986) Immunological cross-reactivity and inhibitor sensitivities of the plasma membrane H+-ATPase from plants and fungi. Biochim Biophys Acta 848: 24–34

    CAS  Google Scholar 

  • Sussman MR, Surowy TK (1987) Physiology and molecular biology of membrane ATPases. Oxf Surv Plant Mol Cell Biol 4: 47–69

    CAS  Google Scholar 

  • Sze H (1985) H+ -translocating ATPase: advances using membrane vesicles. Annu Rev Plant Physiol 36: 175–208

    CAS  Google Scholar 

  • Tanford C (1982) Simple model for the chemical potential change of a transported ion in active transport. Proc Natl Acad Sci USA 79: 2882–2884

    PubMed  CAS  Google Scholar 

  • Teruel JA, Gomez-Fernandez JC (1986) Distances between the functional sites of sarcoplasmic reticulum (Ca2 + + Mg2 +)-ATPase and the lipid/water interface. Biochim Biophys Acta 863: 178–184

    PubMed  CAS  Google Scholar 

  • Tognoli L, Colombo R (1986) Protein phosphorylation in intact cultured sycamore (Acerpseudo-platanus) cells and its response to fusicoccin. Biochem J 235: 45–58

    PubMed  CAS  Google Scholar 

  • Vara F, Serrano R (1981) Purification and characterization of a membrane-bound ATP-diphos-phohydrolase from Cicer arietinum (chick-pea) roots. Biochem J 197: 637–643

    PubMed  CAS  Google Scholar 

  • Vara F, Serrano R (1982) Partial purification and properties of the proton-translocating ATPase of plant plasma membranes. J Biol Chem 257: 12826–12830

    PubMed  CAS  Google Scholar 

  • Vara F, Serrano R (1983) Phosphorylated intermediate of the ATPase of plant plasma membranes. J Biol Chem 258: 5334–5336

    PubMed  CAS  Google Scholar 

  • Vesper MJ, Evans ML (1979) Nonhormonal induction of H+ efflux from plant tissues and its correlation with growth. Proc Natl Acad Sci USA 76: 6366–6370

    PubMed  CAS  Google Scholar 

  • Villalobo A (1982) Potassium transport coupled to ATP hydrolysis in reconstituted proteoliposomes of yeast plasma membrane ATPase. J Biol Chem 257: 1824–1828

    PubMed  CAS  Google Scholar 

  • Villalobo A (1984) Energy-dependent H+ and K+ translocation by reconstituted yeast plasma membrane ATPase. Can J Biochem Cell Biol 62: 865–877

    CAS  Google Scholar 

  • Walderhaug MO, Post RL, Saccomani G, Leonard RT, Briskin DP (1985) Structural relatedness of three ion-transport adenosine triphosphatases around their sites of phosphorylation. J Biol Chem 260: 3852–3859

    PubMed  CAS  Google Scholar 

  • Warncke J, Slayman CL (1980) Metabolic modulation of stoichiometry in a proton pump. Biochim Biophys Acta 591: 224–229

    PubMed  CAS  Google Scholar 

  • Willsky GR, White DA, McCabe BC (1984) Metabolism of added orthovanadate to vanadyl and high-molecular-weight vanadates by Saccharomyces cerevisiae. J Biol Chem 259: 13273–13281

    PubMed  CAS  Google Scholar 

  • Zocchi G (1985) Phosphorylation-dephosphorylation of membrane proteins controls the microsomal H+ -ATPase activity of corn roots. Plant Sci 40: 153–159

    CAS  Google Scholar 

  • Zocchi G (1988) Separation of membrane vesicles from maize roots having different calcium transport activities. Plant Sci 54: 103–108

    CAS  Google Scholar 

  • Zocchi G, Hanson JB (1983) Calcium transport and ATPase activity in a microsomal vesicle fraction from corn roots. Plant Cell Environ 6: 203–209

    CAS  Google Scholar 

  • Zocchi G, Rogers SA, Hanson JB (1983) Inhibition of proton pumping in corn roots is associated with increased phosphorylation of membrane proteins. Plant Sci Lett 31: 215–221

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Serrano, R. (1989). Plasma Membrane ATPase. In: Larsson, C., Møller, I.M. (eds) The Plant Plasma Membrane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74522-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74522-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74524-9

  • Online ISBN: 978-3-642-74522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics