Skip to main content

A Critical Evaluation of Markers Used in Plasma Membrane Purification

  • Chapter
The Plant Plasma Membrane

Abstract

A membrane marker is any property that can be used to identify a specific membrane. In the ideal case, the marker used is not only confined to a single membrane, but is also uniformly distributed in the membrane, thus constituting an absolute marker for that membrane (Quail 1979). Meaning, that wherever the marker is found the membrane is present in direct proportion to the marker. Very few, if any, of the markers currently in use fulfill the above requirements. Rather, most markers have one primary location and one, or several, secondary locations. Furthermore, the marker may be non-uniformly distributed in the membrane due to membrane lateral heterogeneity, or may be absent in certain cell types. Two markers which are close to ideal are cytochrome c oxidase of the mitochondrial inner membrane and chlorophyll for chloroplast thylakoids, although lateral heterogeneity is a striking feature of the latter membrane (review Andersson and Anderson 1980). By contrast, antimycin A-insensitive NAD(P)H-cytochrome c reductase, the most commonly used marker for the endoplasmic reticulum, is in fact found in several membranes (review, Møller and Lin 1986) and is far from an ideal marker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BSA:

bovine serum albumin

BTP:

bis-Tris propane

CCD:

countercurrent distribution

DCCD:

N,N′-dicyclohexylcarbodiimide

DTT:

dithiothreitol

GS I:

glucan synthase I or 1,4-β-glucan synthase

GS II:

glucan synthase II or 1,3-β-glucan synthase

HEPES:

N-(2-hydroxyethyl)piperazine-N′-2-ethanesulfonic acid

MES:

2-(N-morpholino)ethanesulfonic acid

MOPS:

3-(N-morpholino)propanesulfonic acid

NAA:

naphthylacetic acid

NPA:

naphthylphthalamic acid

PMSF:

phenylmethylsulfonyl fluoride

PTA:

phosphotungstic acid

PVPP:

polyvinylpolypyrrolidone

SDS:

sodium dodecyl sulfate

STA:

silicotungstic acid

Tris:

tris(hydroxymethyl)aminomethane

UDPG:

UDP-glucose

References

  • Ali MD, Akazawa T (1986) Association of H+ -translocating ATPase in the Golgi membrane system from suspension-cultured cells of sycamore (Acer pseudoplatanus L.). Plant Physiol 81: 222–227

    Article  PubMed  CAS  Google Scholar 

  • Andersson B, Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440

    Article  PubMed  CAS  Google Scholar 

  • Andrews J, Keegstra K (1983) Acyl-CoA synthetase is located in the outer membrane and acyl-CoA thioesterase in the inner membrane of pea chloroplast envelopes. Plant Physiol 72: 735–740

    Article  PubMed  CAS  Google Scholar 

  • Appelmans F, Wattiaux R, de Duve C (1955) Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J 59: 438–455

    Google Scholar 

  • Askerlund P, Larsson C, Widell S (1988) Localization of donor and acceptor sites of NADH dehydrogenase activities using inside-out and right-side-out plasma membrane vesicles from plants. FEBS Lett 239: 23–28

    Article  CAS  Google Scholar 

  • Avruch J, Wallach DFH (1971) Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta 233: 334–347

    Article  PubMed  CAS  Google Scholar 

  • Baginski ES, Foa PP, Zak B (1967) Determination of phosphate: study of labile organic phosphate interference. Clin Chim Acta 15: 155–158

    Article  CAS  Google Scholar 

  • Barr R, Sandelius AS, Crane FL, Morre DJ (1986) Redox reactions of tonoplast and plasma membranes isolated from soybean hypocotyls by free-flow electrophoresis. Biochim Biophys Acta 852: 254–261

    Article  PubMed  CAS  Google Scholar 

  • Bérczi A, Larsson C, Widell S, Moller IM (1989) On the presence of inside-out plasma membrane vesicles and vanadate-inhibited K+ Mg2 +-ATPase in microsomal fractions from wheat and maize roots. Physiol Plant 77: 12–19

    Article  Google Scholar 

  • Bowman BJ, Slayman CW (1979) The effects of vanadate on the plasma membrane ATPase of Neurospora crassa. J Biol Chem 254: 2928–2934

    PubMed  CAS  Google Scholar 

  • Buckhout TJ, Hrubec TC (1986) Pyridine nucleotide-dependent ferricyanide reduction associated with isolated plasma membranes of maize (Zea mays L.) roots. Protoplasma 135: 144–154

    Article  CAS  Google Scholar 

  • Bush DR, Sze H (1986) Calcium transport in tonoplast and endoplasmic reticulum vesicles isolated from cultured carrot cells. Plant Physiol 80: 549–555

    Article  PubMed  CAS  Google Scholar 

  • Camirand A, Brummell D, MacLachlan G (1987) Fucosylation of xyloglucan: localization of the transferase in dictyosomes of pea stem cells. Plant Physiol 84: 753–756

    Article  PubMed  CAS  Google Scholar 

  • Canut H, Brightman A, Boudet AM, Morre DJ (1988) Plasma membrane vesicles of opposite sidedness from soybean hypocotyls by preparative free-flow electrophoresis. Plant Physiol 86: 631–637

    Article  PubMed  CAS  Google Scholar 

  • Chanson A, McNaughton E, Taiz L (1984) Evidence for a KCl-stimulated, Mg2 +-ATPase on the Golgi of corn coleoptiles. Plant Physiol 76: 498–507

    Article  PubMed  CAS  Google Scholar 

  • Chanson A, Fichmann J, Spear D, Taiz L (1985) Pyrophospate-driven proton transport by microsomal membranes of corn coleoptiles. Plant Physiol 79: 159–164

    Article  PubMed  CAS  Google Scholar 

  • Cline K, Andrews J (1983) Galactosyltransferases involved in galactolipid biosynthesis are located in the outer membrane of pea chloroplast envelopes. Plant Physiol 71: 366–372

    Article  PubMed  CAS  Google Scholar 

  • Day DA, Wiskich JT (1975) Isolation and properties of the outer membrane of plant mitochondria. Arch Biochem Biophys 171: 117–123

    Article  PubMed  CAS  Google Scholar 

  • Donaldson RP, Tully RE, Young OA, Beevers H (1981) Organelle membranes from germinating castor bean endosperm. II. Enzymes, cytochromes, and permeability of the glyoxysome membrane. Plant Physiol 67: 21–25

    Google Scholar 

  • Douce R, Holz RB, Benson AA (1973) Isolation and properties of the envelope of spinach chloroplasts. J Biol Chem 248: 7215–7222

    PubMed  CAS  Google Scholar 

  • Doyle D, Bujanover Y, Petell JK (1988) Plasma membrane: biogenesis and turnover. In: Arias IM, Jacoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver and pathobiology, 2nd Edn. Raven, New York, pp 141–163

    Google Scholar 

  • Flynn KJ, Öpik H, Syrett PJ (1987) The isolation of plasma membrane from the diatom Phaeodactylum tricornutum using an aqueous two-polymer phase system. J Gen Microbiol 133: 93–101

    CAS  Google Scholar 

  • Fredrikson K, Larsson C (1989) Activation of l,3-β-glucan synthase by Ca2+, spermine and cellobiose. — Localization of activator sites using inside-out plasma membrane vesicles. Physiol Plant 77: 196–201

    Article  CAS  Google Scholar 

  • Gallagher SR, Leonard RT (1982) Effect of vanadate, molybdate, and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots. Plant Physiol 70: 1335–1340

    Article  PubMed  CAS  Google Scholar 

  • Gibrat R, Grouzis J-P, Rigaud J, Galthier N, Grignon C (1989) Electrostatic analysis of effects of ions on the inhibition of corn root plasma membrane Mg2 + -ATPase by the bivalent orthovanadate. Biochim Biophys Acta 979: 46–52

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TW (1955) Carotenoids. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol 3, Springer, Berlin Gottingen Heidelberg, pp 272–311

    Chapter  Google Scholar 

  • Gräf P, Weiler EW (1989) ATP-driven Ca2 +-transport in sealed plasma membrane vesicles prepared by aqueous two-phase partitioning from leaves of Commelina communis L. Physiol Plant 75: 469–478

    Article  Google Scholar 

  • Green JR (1983) The Golgi apparatus. In: Hall JL, Moore AL (eds) Isolation of membranes and organelles from plant cells. Academic Press, London, pp 135–152

    Google Scholar 

  • Grouzis J-P, Gibrat R, Rigaud J, Grignon C (1987) Study of the sidedness and tightness to H+ of corn root plasmalemma vesicles: preparation of a fraction enriched in inside-out vesicles. Biochim Biophys Acta 903: 449–464

    Article  CAS  Google Scholar 

  • Hager A, Biber W (1984) Functional and regulatory properties of H+ -pumps at the tonoplast and plasma membranes of Zea mays coleoptiles. Z Naturforsch 39c: 927–937

    Google Scholar 

  • Hallberg M, Larsson C (1981) Compartmentation and export of 14CO2 fixation products in mesophyll protoplasts from the C4 plant Digitaria sanguinalis. Arch Biochem Biophys 208: 121–130

    Article  PubMed  CAS  Google Scholar 

  • Hallberg M, Larsson C (1983) Highly purified intact chloroplasts from mesophyll protoplasts of the C4 plant Digitaria sanguinalis. Inhibition of the phosphoglycerate reduction by orthophosphate and by phosphoenolpuruvate. Physiol Plant 57: 330–338

    Google Scholar 

  • Harinasut P, Takabe T, Akazawa T, Tagaya M, Fukui T (1988) Characterization of an ATPase associated with the inner envelope membrane of amyloplasts from suspension-cultured cells of sycamore (Acerpseudoplatanus L.). Plant Physiol 88: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Hartmann-Bouillon M-A, Benveniste P (1978) Sterol biosynthetic capability of purified membrane fractions from maize coleoptiles. Phytochemistry 17: 1037–1042

    Article  CAS  Google Scholar 

  • Hendriks T (1977) Multiple location of K+ -ATPase in maize coleoptiles. Plant Sci Lett 9: 351–363

    Article  CAS  Google Scholar 

  • Hodges TK, Leonard RT, Bracker CE, Keenan TW (1972) Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with plasma membranes. Proc Natl Acad Sci USA 69: 3307–3311

    Article  PubMed  CAS  Google Scholar 

  • Jacobs M, Hertel R (1978) In vitro auxin binding to subcellular fractions from Cucurbita hypocotyls: in vitro evidence for an auxin transport carrier. Planta 142: 1–10

    Article  CAS  Google Scholar 

  • Joyard J, Douce R (1976) Preparation et activites enzymatiques de l’enveloppe des chloroplasts d’Épinard. Physiol Veg 14: 31–48

    CAS  Google Scholar 

  • Kauss H, Jeblick W (1985) Activation by polyamines, polycations and ruthenium red of the Ca2 + -dependent glucan synthase from soybean cells. FEBS Lett 185: 226–230

    Article  CAS  Google Scholar 

  • Kauss M, Kohle M, Jeblick W (1983) Proteolytic activation and stimulation by Ca2+ of glucan synthase II from soybean cells. FEBS Lett 158: 84–88

    Article  CAS  Google Scholar 

  • Kjellbom P, Larsson C (1984) Preparation and polypeptide composition of chlorophyll-free plasma membranes from leaves of light-grown spinach and barley. Physiol Plant 62: 501–509

    Article  CAS  Google Scholar 

  • Kylin A, Sommarin M (1986) ATPases and membrane properties in relation to ecological differences. In: Trewavas A J (ed) Molecular and cellular aspects of calcium in plant development. Plenum, New York, pp 261–268

    Google Scholar 

  • Larsson C, Andersson B (1978) Two-phase methods for chloroplasts, chloroplast elements and mitochondria. In: Reid E (ed) Plant organelles. Ellis Horwood, Chichester, pp 35–46

    Google Scholar 

  • Larsson C, Collin C, Albertsson P-Ã… (1971) Characterization of three classes of chloroplasts obtained by counter-current distribution. Biochim Biophys Acta 245: 425–438

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Kjellbom P, Widell S, Lundborg T (1984) Sidedness of plant plasma membrane vesicles purified by partitioning in aqueous two-phase systems. FEBS Lett 171: 271–276

    Article  CAS  Google Scholar 

  • Larsson C, Widell S, Sommarin M (1988) Inside-out plasma membrane vesicles of high purity obtained by aqueous polymer two-phase partitioning. FEBS Lett 229: 289–292

    Article  CAS  Google Scholar 

  • Lembi CA, Morre DJ, St-Thomson D, Hertel R (1971) N-1-naphthylphthalamic-acid-binding activity of a plasma membrane-rich fraction from maize coleoptiles. Planta 99: 37–45

    Article  CAS  Google Scholar 

  • López-Pérez MJ, Pan’s G, Larsson C (1981) Highly purified mitochondria from rat brain prepared by phase partition. Biochim Biophys Acta 635: 359–368

    Article  PubMed  Google Scholar 

  • Lord JM, Kagawa T, Moore TS, Beevers H (1973) Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J Cell Biol 57: 659–667

    Article  PubMed  CAS  Google Scholar 

  • Lundborg T, Widell S, Larsson C (1981) Distribution of ATPases in wheat root membranes separated by phase partition. Physiol Plant 52: 89–95

    Article  CAS  Google Scholar 

  • Macara IG (1980) Vanadium, an element in search of a role. Trends Biochem Sci 5: 92–94

    Article  CAS  Google Scholar 

  • Maury WJ, Huber SC, Moreland DE (1981) Effects of magnesium on intact chloroplasts. II Cation specificity and involvement of the envelope ATPase in (sodium)potassium/proton exchange across the envelope. Plant Physiol 68: 1257–1263

    Google Scholar 

  • McCarthy DR, Selman BR (1986) Properties of a partially purified nucleoside triphosphatase ( NTPase) from the chloroplast envelope of pea. Plant Physiol 80: 908–912

    Google Scholar 

  • McCarthy DR, Keegstra K, Selman BR (1984) Characterization and localization of the ATPase associated with pea chloroplast envelope membranes. Plant Physiol 76: 584–588

    Article  Google Scholar 

  • Memon AR, Sommarin M, Kylin A (1987) Plasmalemma from the roots of cucumber: isolation by two-phase partitioning and characterization. Physiol Plant 69: 237–243

    Article  CAS  Google Scholar 

  • Michalke W (1982) pH-shift dependent kinetics of NPA-binding in two particulate fractions from corn coleoptile homogenates. In: Marme D, Marre E, Hertel R (eds) Plasmalemma and tonoplast: their function in the plant cell. Elsevier Biomedical, Amsterdam, pp 129–135

    Google Scholar 

  • Møller IM, Lin W (1986) Membrane-bound NAD(P)H dehydrogenases in higher plant cells. Annu Rev Plant Physiol 37: 309–334

    Article  Google Scholar 

  • Monk BC, Montesinos C, Leonard K, Serrano R (1989) Sidedness of yeast plasma membrane vesicles and mechanisms of activation of the ATPase by detergents. Biochim Biophys Acta 981: 226–234

    Article  PubMed  CAS  Google Scholar 

  • Montague MJ, Ray PM (1977) Phospholipid-synthesizing enzymes associated with Golgi dictyosomes from pea tissue. Plant Physiol 59: 225–230

    Article  PubMed  CAS  Google Scholar 

  • M’Voula-Tsieri M, Hartmann-Bouillon MA, Benveniste P (1981) Properties of nucleosides diphosphatases in purified membrane fractions from maize coleoptiles. I. Study of latency. Plant Sci Lett 20: 379–386

    Google Scholar 

  • Nguyen TD, Miguel M, Dubacq J-P, Siegenthaler P-A (1987) Localization and some properties of a Mgf + -dependent ATPase in the inner membrane of pea chloroplast envelopes. Plant Sci 50: 57–63

    Article  Google Scholar 

  • Nørby JG (1988) Coupled assay of Na+, K+-ATPase activity. Methods Enzymol 156: 116–119

    Article  PubMed  Google Scholar 

  • Palmgren MG, Sommarin M (1989) Lysophosphatidylcholine stimulates ATP dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol 90: 1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Palmgren MG, Sommarin M, Ulvskov P, J0rgensen PL (1988a) Modulation of plasma membrane H+-ATPase from oat roots by lysophosphatidylcholine, free fatty acids and phospholipase A2. Physiol Plant 74: 11–19

    Article  CAS  Google Scholar 

  • Palmgren MG, Sommarin M, J0rgensen PL (1988b) Substrate stabilization of lysophosphatidylcholine-solubilized plasma membrane H+-ATPase from oat roots. Physiol Plant 74: 20–25

    Article  CAS  Google Scholar 

  • Palmgren MG, Askerlund P, Fredrikson K, Widell S, Sommarin M, Larsson C (1990a) Sealed inside-out and right-side-out plasma membrane vesicles: — Optimal conditions for formation and separation. Plant Physiol, in press

    Google Scholar 

  • Palmgren MG, Sommarin M, Ulvskov P, Larsson C (1990b) Effect of detergents on the H+ -ATPase activity of inside-out and right-side-out plasma membrane vesicles. Biochim Biophys Acta, in press

    Google Scholar 

  • Quail PH (1979) Plant cell fractionation. Annu Rev Plant Physiol 30: 425–484

    Article  CAS  Google Scholar 

  • Racusen RH (1988) Separation of dense, polysaccharide-containing vesicles from secreting, cultured oat cells. Characterization of a putative secretory vesicle fraction. Physiol Plant 74: 752–762

    Article  Google Scholar 

  • Ray PM (1977) Auxin-binding sites of maize coleoptiles are localized on membranes of the endoplasmic reticulum. Plant Physiol 59: 594–599

    Article  PubMed  CAS  Google Scholar 

  • Ray PM (1979) Maize coleoptile cellular membranes bearing different types of glucan synthetase activity. In: Reid E (ed) Plant organelles. Ellis Horwood, Chichester, pp 135–146

    Google Scholar 

  • Ray PM, Shininger TL, Ray MM (1969) Isolation of β-Glucan synthetase particles from plant cells and identification with Golgi membranes. Proc Natl Acad Sci USA 64: 605–612

    Article  PubMed  CAS  Google Scholar 

  • Rea PA, Poole RJ (1985) Proton-translocating inorganic pyrophosphatase in red beet (Beta vulgaris L) tonoplast vesicles. Plant Physiol 77: 46–52

    Article  PubMed  CAS  Google Scholar 

  • Robinson C, Larsson C, Buckhout TJ (1988) Identification of a calmodulin-stimulated (Ca2+ + Mg2 +)-ATPase in a plasma membrane fraction isolated from maize (Zea mays) leaves. Physiol Plant 72: 177–184

    Article  CAS  Google Scholar 

  • Roland J-C (1978) General preparation and staining of thin sections. In: Hall JL (ed) Electron microscopy and cytochemistry of plant cells. Elsevier, Amsterdam, pp 1–62

    Google Scholar 

  • Roland J-C, Lembi CA, Morre DJ (1972) Phosphotungstic acid-chromic acid as a selective electron-dense stain for plasma membranes of plant cells. Stain Technol 47: 195–200

    PubMed  CAS  Google Scholar 

  • Sommarin M, Lundborg T, Kylin A (1985) Comparison of K, MgATPases in purified plasmalemma from wheat and oat. - Substrate specificities and effects of pH, temperature and inhibitors. Physiol Plant 65: 27–32

    Google Scholar 

  • Sparace SA, Moore Jr TS (1981) Phospholipid metabolism in plant mitochondria. II Submito-chondrial sites of synthesis of phosphatidylcholine and phosphatidylethanolamine. Plant Physiol 67: 261–265

    Google Scholar 

  • Sze H (1985) H+ -translocating ATPases: advances using membrane vesicles. Annu Rev Plant Physiol 36: 175–208

    Article  CAS  Google Scholar 

  • Tanford CH (1973) The hydrophobic effect. Wiley, New York

    Google Scholar 

  • Uemura M, Yoshida S (1983) Isolation and identification of plasma membrane from light-grown winter rye seedlings (Secale cereale L. cv. Puma ). Plant Physiol 73: 586–597

    Google Scholar 

  • Vianello A, Dell’Antone P, Macri F (1982) ATP-dependent and ionophore-induced proton translocation in pea stem microsomal vesicles. Biochim Biophys Acta 689: 89–96

    Article  CAS  Google Scholar 

  • Wagner GJ (1985) Vacuoles. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, new series, vol 1, Cell components. Springer Berlin Heidelberg New York, pp 105–133

    Google Scholar 

  • Wang Y, Sze H (1985) Similarities and differences between the tonoplast-type and the mitochondrial H+-ATPases of oat roots. J Biol Chem 260: 10434–10443

    PubMed  CAS  Google Scholar 

  • Widell S, Larsson C (1981) Separation of presumptive plasma membranes from mitochondria by partition in an aqueous polymer two-phase system. Physiol Plant 51: 368–374

    Article  CAS  Google Scholar 

  • Widell S, Larsson C (1983) Distribution of cytochrome b photoreductions mediated by endogenous photosensitizer or methylene blue in fractions from corn and cauliflower. Physiol Plant 57: 196–202

    Article  CAS  Google Scholar 

  • Widell S, Lundborg T, Larsson C (1982) Plasma membranes from oats prepared by partition in an aqueous polymer two-phase system. On the use of light-induced cytochrome b reduction as a marker for the plasma membrane. Plant Physiol 70: 1429–1435

    Google Scholar 

  • Widell S, Caubergs RJ, Larsson C (1983) Spectral characterization of light-reducible cytochrome in a plasma membrane-enriched fraction and in other membranes from cauliflower inflorescences. Photochem Photobiol 38: 95–98

    Article  CAS  Google Scholar 

  • Wigge B, Gardestrom P (1987) The effects of different ionic-conditions on the activity of cytochrome c oxidase in purified plant mitochondria. In: Moore AL, Beechey RB (eds) Plant mitochondria. Structural, functional and physiological aspects. Plenum, New York, pp 127–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Widell, S., Larsson, C. (1990). A Critical Evaluation of Markers Used in Plasma Membrane Purification. In: Larsson, C., Møller, I.M. (eds) The Plant Plasma Membrane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74522-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74522-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74524-9

  • Online ISBN: 978-3-642-74522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics