Skip to main content

The Role of the Plant Plasma Membrane in Symbiosis

  • Chapter

Abstract

The symbiotic associations that will be considered in this chapter involve a stable physical relationship between two different organisms that is perceived to be mutually beneficial to both partners (Smith and Douglas 1987). In each case, intimate surface contact between a microorganism and a plant cell leads to invagination of the plant cell plasma membrane and sometimes to enclosure of the microsymbiont within the cytoplasm of the plant cell. However, although physically internalized, all stable endosymbionts remain, in a sense, topological outside the plant cell cytoplasm because they are bounded by a host- derived membrane, the perisymbiotic membrane, which is a modified form of the plasma membrane. This review will focus on the plasma membrane as the agent for cellular morphogenesis during the establishment of the symbiosis, and as the mediator of signal and nutrient exchange between the two partners.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

VA:

vesicular arbuscular

References

  • Anderson RGW, Pathak RK (1985) Vesicles and cisternae in the trans-Golgi apparatus of human fibroblasts are acidic compartments. Cell 40: 635–643

    Article  PubMed  CAS  Google Scholar 

  • Bassarab S, Mellor RB, Werner D (1986) Evidence for two types of Mg++ ATPase in the peribacteroid membrane from Glycine max root nodules. Endocyt Cell Res 3: 189–196

    Google Scholar 

  • Bauer WD (1981) Infection of legumes by rhizobia. Annu Rev Plant Physiol 32: 407–449

    Article  CAS  Google Scholar 

  • Benson DR (1988) The genus Frankia: actinomycete symbiont of plants. Microbiol Sci 5: 9–13

    PubMed  CAS  Google Scholar 

  • Berg RH, McDowell L (1988) Cytochemistry of the wall of infected cells in Casuarina actinorhizae. Can J Bot 62: 2038–2047

    Google Scholar 

  • Bergensen FJ, Turner GL (1967) Nitrogen fixation by the bacteroid fraction of breis of soybean nodules. Biochim Biophys Acta 141: 507–515

    Article  Google Scholar 

  • Berry AM, Mclntyre L, McCully ME (1986) Fine structure of root hair infection leading to nodulation in the Frankia-Alnus symbiosis. Can J Bot 64: 292–305

    Article  Google Scholar 

  • Blumwald E, Fortin MG, Rea PA, Verma DPS (1985) Presence of host plasma membrane type H+ -ATPase in the membrane envelope enclosing the bacteroids in soybean root nodules. Plant Physiol 78: 665–672

    Article  PubMed  CAS  Google Scholar 

  • Boiler T, Wiemken A (1986) Dynamics of vacuolar compartmentation. Annu Rev Plant Physiol 37: 137–164

    Article  Google Scholar 

  • Bradley DJ, Butcher GW, Galfre G, Wood E, Brewin NJ (1986) Physical association between the peribacteroid membrane and lipopolysaccharide from the bacteroid outer membrane in Rhizobium-infected pea root nodule cells. J Cell Sci 85: 47–61

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Wood EA, Larkins AP, Galfre G, Butcher GW, Brewin NJ (1988) Isolation of monoclonal antibodies reacting with peribacteroid membranes and other components of pea root nodules containing Rhizobium leguminosarum. Planta 173: 149–160

    Article  CAS  Google Scholar 

  • Brewin NJ, Robertson JG, Wood EA, Wells B, Larkins AP, Galfre G, Butcher GW (1985) Monoclonal antibodies to antigens in the peribacteroid membrane from Rhizobium-induced root nodules of pea cross-react with plasma membranes and Golgi bodies. EMBO J 4: 605–611

    PubMed  CAS  Google Scholar 

  • Callaham DA, Torrey JG (1981) The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can J Bot 62: 2375–2384

    Google Scholar 

  • Chandler MR (1978) Some observations of infection of Arachis hypogaea by Rhizobium. J Exp Bot 29: 749–755

    Article  Google Scholar 

  • Chandler MR, Date RA, Roughley RJ (1982) Infection and root-nodule development in Stylosanthes species by Rhizobium. J Exp Bot 33: 47–57

    Article  Google Scholar 

  • Domigan NM, Farnden K JF, Robertson JG, Monk BC (1988) Characterization of the peribacteroid membrane ATPase of lupin root nodules. Arch Biochem Biophys 264: 564–573

    Article  PubMed  CAS  Google Scholar 

  • deFaria SM, Mclnroy SG, Sprent JI (1987) The occurrence of infected cells with persistent infection threads in legume root nodules. Can J Bot 65: 553–558

    Article  Google Scholar 

  • Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau G A, Deegan S, Walker GC, Signer ER (1985) Symbiotic mutants of R. meliloti that uncouple plant from bacterial differentiation. Cell 49: 869–877

    Article  Google Scholar 

  • Finan TM, Oresnik I, Bottacin A (1988) Mutants of R. meliloti defective in succinate metabolism. J Bacteriol 170: 3396–3403

    PubMed  CAS  Google Scholar 

  • Fischer HM, Alvarez-Morales A, Hennecke H (1986) Pleiotropic nature of symbiotic regulatory mutants. B. japonicum nifA gene is involved in control of nif gene expression and formation of determinate symbiosis. EMBO J 5: 1165–1173

    PubMed  CAS  Google Scholar 

  • Fortin MG, Zelechowska M, Verma DPS (1985) Specific targetting of membrane nodulins to the bacteroid-enclosing compartment in soybean nodules. EMBO J 4: 3041–3046

    PubMed  CAS  Google Scholar 

  • Fortin MG, Morrison N, Verma DPS (1987) Nodulin 26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res 15: 813–824

    Article  PubMed  CAS  Google Scholar 

  • Gardiol AE, Truchet GL, Dazzo FB (1987) Requirement for succinate dehydrogenase activity for symbiotic bacteroid differentiation of Rhizobium meliloti root nodules. Appl Environ Microbiol 53: 1947–1950

    PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V (1986) Cellular modifications during host-fungus interactions on endomycorrhizae. In: Bailey JA (ed) Biology and molecular biology of plant pathogen interactions. NATO ASI Series Vol HI. Springer, Berlin Heidelberg New York Tokyo, pp 29–3

    Google Scholar 

  • Gianinazzi-Pearson V, Morandi D, Dexheimer J, Gianinazzi S (1981) Ultrastructural and ul-tracytochemical features of a Glomus tenuis mycorrhiza. New Phytol 88: 633–639

    Article  Google Scholar 

  • Glenn AR, Dilworth MJ (1981) Oxidation of substrates by isolated bacteroids and free-living cells of Rhizobium leguminosarum 3841. J Gen Microbiol 126: 243–247

    CAS  Google Scholar 

  • Griffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S (1988) The mannose-6-phosphate receptor and the biogenesis of lysosomes. Cell 52: 329–341

    Article  PubMed  CAS  Google Scholar 

  • Harris N (1986) Organization of the plant endomembrane system. Annu Rev Plant Physiol 37: 73–92

    Article  CAS  Google Scholar 

  • Hirsch AM, Smith C A (1987) Effects of Rhizobium meliloti nif and fix mutants on alfalfa root nodule development. J Bacteriol 169: 1137–1146

    PubMed  CAS  Google Scholar 

  • Jacobs FA, Zhang M, Fortin MG, Verma DPS (1987) Several nodulins of soybean share structural domains but differ in their subcellular locations. Nucleic Acids Res 15: 1271–1280

    Article  PubMed  CAS  Google Scholar 

  • Jeffree CE, Dale JE, Fry SC (1986) The genesis of intercellular spaces in developing leaves of Phaseolus vulgaris. Protoplasma 132: 90–98

    Article  Google Scholar 

  • Kannenberg EL, Brewin NJ (1989) Expression of a cell surface antigen is regulated by oxygen and pH in Rhizobium leguminosarum strain 3841. J Bacteriol 171: 4543–4548

    PubMed  CAS  Google Scholar 

  • Katinakis P, Verma DPS (1985) Nodulin 24 gene of soybean codes for a peptide of the peribacteroid membrane. Proc Natl Acad Sci USA 82: 4157–4161

    Article  PubMed  CAS  Google Scholar 

  • Kijne JW, Smit G, Diaz CL, Lugtenberg EJJ (1988) Lectin-enhanced accumulation of manganese limited Rhizobium leguminsarum cells of pea root hair tips. J Bacteriol 170: 2994–3000

    PubMed  CAS  Google Scholar 

  • Kinnbach A, Mellor RB, Werner D (1987) Alpha-mannosidase II isoenzyme in the peribacteroid space of Glycine max root nodules. J Exp Bot 38: 1373–1377

    Article  Google Scholar 

  • Lancelle SA, Torrey JG (1984) Early development of Rhizobium-induced root nodules of Parasponia rigida. Infection and early nodule initiation. Protoplasma 123: 26–37

    Google Scholar 

  • Lloyd CW, Pearce KJ, Rawlings DJ, Ridge RW, Shaw PJ (1987) Endoplasmic microtubules connect the advancing nucleus to the tip of legume root hairs, but F-actin is involved in basipetal migration. Cell Mot Cytoskel 8: 27–36

    Article  Google Scholar 

  • Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proc Natl Acad Sci USA 77: 2113–2118

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Flugge UI, Kaiser G, Heber U, Heldt HW (1985) Energy-dependent uptake of malate into vacuoles isolated from barley mesophyll protoplasts. Biochim Biophys Acta 806: 311–319

    Article  CAS  Google Scholar 

  • Massicotte HB, Peterson RL, Ackerly CA, Piche Y (1986) Structure and ontogeny of Alnus crispa-Alpova diplophloeus ectomycorrhizae. Can J Bot 64: 177–192

    Article  Google Scholar 

  • Mauro VP, Nguyen T, Katinakis P, Verma DPS (1985) Primary structure of the soybean nodulin-23. Nucleic Acids Res 13: 239–249

    Article  PubMed  CAS  Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55: 663–671

    Article  PubMed  CAS  Google Scholar 

  • Mellor RB, Werner D (1986) The fractionation of Glycine max root nodule cells: a methodological overview. Endocyt Cell Res 3: 317–336

    Google Scholar 

  • Mellor RB, Werner D (1987) Peribacteroid membrane biogenesis in mature legume root nodules. Symbiosis 3: 75–100

    CAS  Google Scholar 

  • Mellor RB, Wiemken A (1988) Peribacteroid organelles as organ-specific forms of lysosomes. In: Bothe H (ed) Nitrogen fixation: Hundred years after. Gustav Fischer, Stuttgart, pp 528

    Google Scholar 

  • Mellor RB, Morschel E, Werner D (1984) Proteases and protease inhibitors present in the peribacteroid space. Z Naturforsch 39c: 123–125

    Google Scholar 

  • Miller IM, Baker DD (1985) The initiation, development and structure of root nodules in Elaeagnus angustifolia. Protoplasma 128: 107–119

    Article  Google Scholar 

  • Moiroud A, Gianinazzi-Pearson V(1984) Symbiotic relationships in Antinorhizae. In: Verma DPS, Hohn T (eds) Genes involved in microbe-plant interactions. Springer, Berlin Heidelberg New York Tokyo, pp 205–223

    Google Scholar 

  • Morandi D, Gianinazzi-Pearson V (1986) Influence of mycorrhizal infections and phosphate nutrition on secondary metabolite content of soybean roots. In: Gianinazzi-Pearson V, Gian- inazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 787–791

    Google Scholar 

  • Morrison N, Verma DPS (1987) A block in the endocytosis of Rhizobium allows cellular differentiation in nodules but affects the expression of some peribacteroid membrane nodulins. Plant Mol Biol 9: 185–196

    Article  CAS  Google Scholar 

  • Perotto S, VandenBosch KA, Butcher GW, Brewin NJ (1989) Immunological analysis of the peribacteroid membrane from pea root nodules and its relationship to other components of the plant endomembrane system, submitted

    Google Scholar 

  • Piche Y, Peterson RL, Howarth MJ, Fortin JA (1983) A structural study of the interaction between the ectomycorrhizal fungus, Pisolithus tinctorius and Pinus strobes roots. Can J bot 61: 1185–1193

    Article  Google Scholar 

  • Quispel A (1988) Bacteria-plant interactions in symbiotic nitrogen fixation. Physiol Plant 74: 783–790

    Article  CAS  Google Scholar 

  • Regensburger B, Meyer L, Filser M, Weber J, Studer D, Lamb JW, Fischer HM, Hahn M, Hennecke H (1986) Bradyrhizobium japonicum mutants defective in root nodule bacteroid development and nitrogen fixation. Arch Microbiol 144: 355–366

    Google Scholar 

  • Robertson JG, Farnden KJF (1980) Ultrastructure and metabolism of the developing legume root nodule. In: Stumpf PK, Conn EE (eds) The biochemistry of plants Vol. 5, Academic Press, New York, pp 65–113

    Google Scholar 

  • Robertson JG, Lyttleton P (1982) Coated and smooth vesicles in the biogenesis of cell walls, plasma membranes, infection threads and peribacteroid membranes in root hairs and nodules of white clover. J Cell Sci 58: 63–78

    PubMed  CAS  Google Scholar 

  • Robertson JG, Lyttleton P (1984) Division of peribacteroid membrane in root nodules of white clover. J Cell Sci 69: 147–157

    PubMed  CAS  Google Scholar 

  • Robertson JG, Lyttleton P, Bullivant S, Grayston GF (1978) Membranes in lupin root nodules. 1. The role of Golgi bodies in the biogenesis of infection threads and peribacteroid membranes. J Cell Sci 30: 129–150

    Google Scholar 

  • Robertson JG, Wells Brewin NJ, Wood EA, Knight CD, Downie JA (1985) The legume-Rhizobium symbiosis: a cell surface interaction. J Cell Sci Suppl 2: 317–331

    PubMed  CAS  Google Scholar 

  • Rolfe BG, Gresshoff PM (1988) Genetic analysis of legume nodule initiation. Annu Rev Plant Physiol 39: 297–319

    Article  Google Scholar 

  • Ronson CW, Astwood PM, Downie JA (1984) Molecular cloning and genetic organization of C4-dicarboxylate transport genes from Rhizobium leguminosarum. J Bacteriol 160: 903–909

    PubMed  CAS  Google Scholar 

  • Sandal NN, Marcker KA (1988) Soybean nodulin 26 is homologous to the major intrinsic protein on the bovine lens fiber membrane. Nucleic Acids Res 16: 9347–9348

    Article  PubMed  CAS  Google Scholar 

  • Sandal NN, Bojsen K, Marcker KA (1987) A small family of nodule-specific genes from soybean. Nucleic Acids Res 15: 1507–1519

    Article  PubMed  CAS  Google Scholar 

  • Saunders MJ, Jones KJ (1988) Distortion of cell plate formation by the intracellular calcium antagonist TMB-8. Protoplasma 144: 92–100

    Article  CAS  Google Scholar 

  • Smith CA, Skvirsky RC, Hirsch AM (1986) Histochemical evidence for the presence of a suberin-like compound in Rhizobium-induced nodules of the non-legume Parasponia rigida. Can J Bot 64: 1474–1483

    Article  CAS  Google Scholar 

  • Smith DC, Douglas AE (1987) The biology of symbiosis. Edward Arnold, London

    Google Scholar 

  • Smith FA, Smith SE (1986) Movement across membranes: physiology and biochemistry. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 75–84

    Google Scholar 

  • Tjepkema JD (1983) Hemoglobins in the nitrogen fixing root nodules of actinorhizal plants. Can J Bot 61: 2924–2929

    Article  CAS  Google Scholar 

  • Tjepkema JD, Ormerod W, Torrey JG (1981) Factors affecting vesicle formation and acetylene reduction (nitrogenase activity) in Frankia. Can J Microbiol 27: 815–823

    Article  PubMed  CAS  Google Scholar 

  • Turgeon BG, Bauer WD (1985) Ultrastructure of infection thread development during the infection of soybean by Rhizobium japonicum. Planta 163: 328–349

    Article  Google Scholar 

  • Udvardi MK, Price DG, Gresshoff PM, Day DA (1988) A dicarboxylate transporter on the peribacteroid membrane of soybean nodules. FEBS Lett 231: 36–40

    Article  CAS  Google Scholar 

  • Vance CP (1983) Rhizobium infection: a beneficial plant disease. Annu Rev Microbiol 37:399–424

    Google Scholar 

  • VandenBosch KA, Bradley DJ, Knox JP, Perotto S, Butcher GW, Brewin NJ (1989) Common components of the infection thread matrix and the intercellular space identified by immuno- cytochemical analysis of pea root nodules and uninfected roots. EMBO J 8: 335–342

    Google Scholar 

  • Verma DPS, Fortin MG, Stanley J, Mauro VP, Purokit S, Morrison N (1986) Nodulins and nodulin genes of Glycine max: a perspective. Plant Mol Biol 7: 51–61

    Article  CAS  Google Scholar 

  • Verma DPS, Delauney A, Kuhse J, Hirel B, Schafer R, Raju K (1988) Metabolites and protein factors controlling nodulin gene expression. In: Bothe H (ed) Nitrogen fixation — 100 years after. Gustav Fischer, Stuttgart, pp 599–604

    Google Scholar 

  • Werner D, Morschel E, Kort R, Mellor RB, Bassarab S (1984) Lysis of bacteroids in the vicinity of the host cell nucleus in an ineffective ( Fix) root nodule of soybean. Planta 162: 8–16

    Google Scholar 

  • Werner D, Mellor RB, Hahn MG, Grisebach H (1985) Glyceollin 1 accumulation in an ineffective type of soybean nodule with an early loss of peribacteroid membrane. Z Naturforsch 40c: 179–181

    Google Scholar 

  • Werner D, Morschel E, Garbers C, Bassarab S, Mellor RB (1988) Particle density and protein composition of the peribacteroid membrane from soybean root nodules is affected by mutation in the microsymbiont B. japonicum. Planta 174: 263–270

    Article  CAS  Google Scholar 

  • Witty JF, Minchin FR, Skot L, Sheehy JE (1986) Nitrogen fixation and oxygen in legume root nodules. Oxford Survey Plant Mol Cell Biol 3: 275–314

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brewin, N.J. (1989). The Role of the Plant Plasma Membrane in Symbiosis. In: Larsson, C., Møller, I.M. (eds) The Plant Plasma Membrane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74522-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74522-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74524-9

  • Online ISBN: 978-3-642-74522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics