Skip to main content

Effects of Temperature on Muscular Function and Locomotory Performance in Teleost Fish

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 5))

Abstract

All modes of animal locomotion are variations on a theme in which the organism converts chemical potential energy into the kinetic energy of a moving body. The range of permissible variations on this theme is limited by physical constraints of the medium in which locomotion occurs and shaped by locomotory demands of a particular life history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RM (1969) The orientation of muscle fibres in the myomeres of fishes. J Mar Biol Assoc UK 49:263–290

    Google Scholar 

  • Altringham JD, Johnston IA (1981) Quantitative histochemical studies of the peripheral innervation of cod (Gadus morhua) fast muscle fibres. J Comp Physiol 143:123–127

    Google Scholar 

  • Altringham JD, Johnston IA (1982) The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscle. J Physiol (London) 333:421–449

    CAS  Google Scholar 

  • Altringham JD, Johnston IA (1986) Evolutionary adaptation to temperature in fish muscle cross bridge mechanisms, tension and ATP turnover. J Comp Physiol 156:819–822

    CAS  Google Scholar 

  • Ballantyne JS, George JC (1978) An ultrastructural and histological analysis of the effects of cold acclimation on vertebrate skeletal muscle. J Thermal Biol 3:109–116

    Google Scholar 

  • Barany M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 52:197–216

    Google Scholar 

  • Beamish FWH (1978) Swimming capacity. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 7: Locomotion. Academic Press, New York London, pp 101–187

    Google Scholar 

  • Bennett AF (1984) Thermal dependence of muscle function. Am J Physiol 247:R217–R229

    PubMed  CAS  Google Scholar 

  • Blake RW (1983) Fish locomotion. Cambridge Univ Press, New York, 203 pp

    Google Scholar 

  • Bone Q (1978) Locomotr muscle. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 7: Locomotion. Academic Press, New York London, pp 361–424

    Google Scholar 

  • Bone Q, Kicenuik J, Jones DR (1978) On the role of the different fibre types in fish myotomes at intermediate speeds. Fish Bull 76:691–699

    Google Scholar 

  • Brett JR (1964) The respiratory metabolism and swimming performance of young sockeye salmon. J Fish Res Board Can 21:1183–1226

    Google Scholar 

  • Brill RW, Dizon AE (1979 a) Red and white muscle fibre activity in swimming skipjack tuna, Katsuwonus pelamis (L.). J Fish Biol 15:679–685

    Google Scholar 

  • Brill RW, Dizon AE (1979 b) Effect of temperature on isotonic twitch of white muscle and predicted maximum swimming speeds of skipjack tauna, Katsuwonus pelamis. Environ Biol Fish 4:199–205

    Google Scholar 

  • Campbell CM, Davies PS (1978) Temperature acclimation in the teleost, Blennius pholis: changes in enzyme activity and cell structure. Comp Biochem Physiol 61B: 165–167

    CAS  Google Scholar 

  • Carey FG, Teal JM, Kanwisher JW, Lawson KD, Beckett JS (1971) Warm-bodied fishes. Am Zool 11:135–143

    Google Scholar 

  • Connell JJ (1961) The relative stabilities of skeletal muscle myosins of some animals. Biochem J 80:503–509

    PubMed  CAS  Google Scholar 

  • Dean JM (1969) The metabolism of tissues of thermally acclimated trout (Salmo gairdneri). Comp Biochem Physiol 29:185–196

    PubMed  CAS  Google Scholar 

  • Dobson GP, Parkhouse WS, Hochachka PW (1987) Regulation of anaerobic ATP-generating pathways in trout fast-twitch skeletal muscle. Am J Physiol 253:R186–R194

    PubMed  CAS  Google Scholar 

  • Driedzic WR, McGuire G, Hatheway M (1981) Metabolic alterations associated with increased energy demand in fish white muscle. J Comp Physiol 141:425–432

    CAS  Google Scholar 

  • Dudley GA, Tullson PC, Terjung RL (1987) Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 262:9109–9114

    PubMed  CAS  Google Scholar 

  • Egginton S, Johnston IA (1984) Effects of acclimation temperature on routine metabolism, muscle mitochondrial volume density and capillary supply in the elver (Anguilla anguilla L.). J Thermal Biol 9:165–170

    Google Scholar 

  • Egginton S, Sidell BD (1989) Temperature acclimation induces changes in subcellular structure of locomotory muscle from striped bass. Am J Physiol 256:R1–R9

    PubMed  CAS  Google Scholar 

  • Fitch NA, Johnston IA, Wood RE (1984) Skeletal muscle capillary supply in a fish that lacks respiratory pigments. Respirat Physiol 57:201–211

    CAS  Google Scholar 

  • Flitney FW, Johnston IA (1979) Mechanical properties of isolated fish red and white muscle fibres. J Physiol (London) 295:49P–50P

    CAS  Google Scholar 

  • Freadman MA (1979 a) Role partitioning of swimming musculature of striped bass, Morone saxatilis Walbaum and bluefish, Pomatomus saltatrix L. J Fish Biol 15:417–423

    Google Scholar 

  • Freadman MA (1979b) Swimming energetics of striped bass (Morone saxatilis) and bluefish (Pomatomus saltatrix): gill ventilation and swimming metabolism. J Exp Biol 83:217–230

    Google Scholar 

  • Greer-Walker M, Pull G (1973) Skeletal muscle function and sustained swimming speeds in the coalfish, Gadus virens L. Comp Biochem Physiol 44A:495–501

    Google Scholar 

  • Hagiwara S, Takahashi K (1967) Resting and spike potentials of skeletal muscle fibers in saltwater elasmobranch and teleost fish. J Physiol (London) 190:499–518

    CAS  Google Scholar 

  • Hazel JR, Prosser CL (1974) Molecular mechanisms of temperature compensation in poikilotherms. Physiol Rev 54:620–677

    PubMed  CAS  Google Scholar 

  • Heap SP, Goldspink G (1986) Alterations to the swimming performance of carp, Cyprinus carpio, as a result of temperature acclimation. J Fish Biol 29:747–753

    Google Scholar 

  • Heap SP, Watt PW, Goldspink G (1985) Consequences of thermal change on the myofibrillar ATPase of five freshwater teleosts. J Fish Biol 26:733–738

    CAS  Google Scholar 

  • Hoar WS, Randall DJ (eds) (1978) Fish physiology, vol 7: Locomotion. Academic Press, New York London, p 13

    Google Scholar 

  • Hochachka PW, Hayes FR (1962) The effect of temperature acclimation on pathways of glucose metabolism in the trout. Can J Zool 40:261–270

    CAS  Google Scholar 

  • Holloszy JF, Coyle EF (1984) Adaptations of skeletal muscle to endurance training. J Appl Physiol 56:831–838

    PubMed  CAS  Google Scholar 

  • Hudson RCL (1969) Polyneuronal innervation of the fast muscles of the marine teleost Cottus scorpius L. J Exp Zool 50:47–67

    CAS  Google Scholar 

  • Johnston IA (1979) Calcium regulatory proteins and temperature acclimation of actomysin ATPase from an eurythermal teleost (Carassius auratus L.). J Comp Physiol 129:163–167

    CAS  Google Scholar 

  • Johnston IA (1980 a) Specialization of fish muscle. In: Goldspink DF (ed) Development and specialization of skeletal muscle. Cambridge Univ Press, London, pp 123–148

    Google Scholar 

  • Johnston IA (1980 b) Contractile properties of fish fast muscle fibres. Mar Biol Lett 1:323–328

    Google Scholar 

  • Johnston IA (1982 a) Biochemistry of myosins and contractile properties of fish skeletal muscle. Mol Physiol 2:15–29

    CAS  Google Scholar 

  • Johnston IA (1982 b) Capillarisation, oxygen diffusion distances and mitochondrial content of carp muscles following acclimation to summer and winter temperatures. Cell Tissue Res 222:325–337

    PubMed  CAS  Google Scholar 

  • Johnston IA (1983 a) Dynamic properties of fish muscle. In: Webb PW, Weihs D (eds) Fish biomechanics. Praeger, New York, pp 36–67

    Google Scholar 

  • Johnston IA (1983 b) Cellular responses to altered body temperature: the role of alterations in the expression of protein isoforms. In: Cossins AR, Sheterline P (eds) Cellular acclimatisation to environmental change. Cambridge Univ Press, London, pp 121–143

    Google Scholar 

  • Johnston IA, Altringham JD (1985) Evolutionary adaptation of muscle power output to environmental temperature: force-velocity characteristics of skinned fibres isolated from antarctic, temperate and tropical marine fish. Pflügers Arch 405:136–140

    PubMed  CAS  Google Scholar 

  • Johnston IA, Brill R (1984) Thermal dependence of contractile properties of single skinned muscle fibres from Antarctic and various warm water marine fishes including skipjack tuna (Katsuwonus pelamis) and Kawakawa (Euthynnus affinis). J Comp Physiol 155:63–70

    Google Scholar 

  • Johnston I A, Goldspink G (1975) Thermodynamic activation parameters of fish myofibrillar ATPase enzyme and evolutionary adaptations to temperature. Nature (London) 257:620–622

    CAS  Google Scholar 

  • Johnston IA, Harrison P (1985) Contractile and metabolic characteristics of muscle fibres from antarctic fish. J Exp Biol 116:223–236

    CAS  Google Scholar 

  • Johnston IA, Harrison P (1987) Morphometrics and ultrastructure of myocardial tissue in notothenioid fishes. Fish Physiol Biochem 3:1–6

    Google Scholar 

  • Johnston IA, Lucking M (1978) Temperature induced variation in the distribution of different types of muscle fibre in the goldfish (Carassius auratus). J Comp Physiol 124:111–116

    Google Scholar 

  • Johnston IA, Maitland B (1980) Temperature acclimation in crucian carp, Carassius carassius L., morphometric analyses of muscle fibre ultrastructure. J Fish Biol 17:113–123

    Google Scholar 

  • Johnston IA, Sidell BD (1984) Differences in temperature dependence of muscle contractile properties and myofibrillar ATPase in a cold-temperate fish. J Exp Biol 111:179–189

    PubMed  CAS  Google Scholar 

  • Johnston IA, Tota B (1974) Myofibrillar ATPase in the various red and white trunk muscles of the tunny (Thunnus thynnus L.) and the tub gurnard (Trigla licerna L.). Comp Biochem Physiol 49B:367–373

    Google Scholar 

  • Johnston IA, Walesby NJ (1977) Molecular mechanisms of temperature adaptation in fish myofibrillar adenosine triphosphatases. J Comp Physiol 119:195–206

    CAS  Google Scholar 

  • Johnston IA, Walesby NJ (1979) Evolutionary temperature adaptation and the calcium regulation of fish actomyosin ATPases. J Comp Physiol 129:169–177

    CAS  Google Scholar 

  • Johnston IA, Wokoma A (1986) Effects of temperature and thermal acclimation on contractile properties and metabolism of skeletal muscle in the flounder (Platichthys flesus L.). J Exp Biol 120:119–130

    CAS  Google Scholar 

  • Johnston IA, Walesby NJ, Davison W, Goldspink G (1975 a) Temperature adaptation of myosin in Antarctic fish. Nature (London) 254:74–75

    CAS  Google Scholar 

  • Johnston IA, Ward PS, Goldspink G (1975 b) Studies on the swimming musculature of the rainbow trout. I. Fibre types. J Fish Biol 7:451–458

    Google Scholar 

  • Johnston IA, Davison W, Goldspink G (1975 c) Adaptations in the Mg++-activated myofibrillar ATPase activity induced by temperature acclimation. FEBS Lett 50:293–295

    PubMed  CAS  Google Scholar 

  • Johnston IA, Davison W, Goldspink G (1977) Energy metabolism of carp swimming muscles. J Comp Physiol 144:203–216

    Google Scholar 

  • Johnston IA, Sidell BD, Driedzic WR (1985) Force-velocity characteristics and metabolism of carp muscle fibres following temperature acclimation. J Exp Biol 119:239–249

    PubMed  CAS  Google Scholar 

  • Jones PL, Sidell BD (1982) Metabolic responses of striped bass to temperature acclimation. II. Alterations in metabolic carbon sources and distributions of fiber types in locomotory muscle. J Exp Zool 219:163–171

    CAS  Google Scholar 

  • Kleckner NW, Sidell BD (1985) Comparison of maximal activities of enzymes from tissues of thermally acclimated and naturally acclimatized chain pickerel (Esox niger). Physiol Zool 58:18–28

    CAS  Google Scholar 

  • Korneliussen H, Dahl HA, Paulsen JE (1978) Histochemical definition of muscle fibre types in the trunk musculature of a teleost fish (cod, Gadus morhue L.). Histochemistry 55:1–16

    PubMed  CAS  Google Scholar 

  • Lighthill MJ (1969) Hydrodynamics of aquatic animal propulsion. Annu Rev Fluid Mech 1:413–446

    Google Scholar 

  • MacDonald JM (1981) Temperature compensation in the peripheral nervous system: Antarctic vs temperate poikilotherms. J Comp Physiol 142:411–418

    Google Scholar 

  • McMahon TA (1984) Muscles, reflexes and locomotion. Univ Press, Princeton, 323 pp

    Google Scholar 

  • McVean AR, Montgomery JC (1987) Temperature compensation in myotomal muscle: Antarctic versus temperate fish. Environ Biol Fish 19:27–33

    Google Scholar 

  • Moerland TS, Sidell BD (1986 a) Biochemical responses to temperature in the contractile protein complex of striped bass, Morone saxatilis. J Exp Zool 238:287–295

    PubMed  CAS  Google Scholar 

  • Moerland TS, Sidell BD (1986 b) Contractile responses to temperature in the locomotory musculature of striped bass, Morone saxatilis. J Exp Zool 240:25–33;

    Google Scholar 

  • Moerland TS, Sidell BD (1986 b) Contractile responses to temperature in the locomotory musculature of striped bass, Morone saxatilis. also see Erratum J Exp Zool 240:410

    Google Scholar 

  • Nemeth P, Hofer HW, Pette D (1979) Metabolic heterogeneity of muscle fibers classified by myosin ATPase. Histochemistry 55:1–6

    Google Scholar 

  • Penney RK, Goldspink G (1981) Short term temperature acclimation in myofibrillar ATPase of a stenontherm Salmo gairdneri Richardson and an eurytherm Carassius auratus. J Fish Biol 18:715–721

    CAS  Google Scholar 

  • Prosser CL (1973) Comparative animal physiology. Saunders, Philadelpia, pp 362–428

    Google Scholar 

  • Roberts JL, Graham JB (1979) Effect of swimming speed on the excess temperatures and activities of heart and red and white muscle in the mackerel Scomber japonicus. Fish Bull 76:861–867

    Google Scholar 

  • Rome LC, Loughna PT, Goldspink G (1984) Muscle fiber activity in carp as a function of swimming speed and muscle temperature. Am J Physiol 247:R272–R279

    PubMed  CAS  Google Scholar 

  • Rome LC, Loughna PT, Goldspink G (1985) Temperature acclimation improved sustained swimming performance in carp at low temperatures. Science 228:194–196

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1972) Locomotion: energy cost of swimming, flying and running. Science 177:222–228

    PubMed  CAS  Google Scholar 

  • Shaklee JB, Christiansen JA, Sidell BD, Prosser CL, Whitt GS (1977) Molecular aspects of temperature acclimation in fish: contributions of changes in enzyme activities and isozyme patterns to metabolic reorganization in the green sunfish. J Exp Zool 201:1–20

    PubMed  CAS  Google Scholar 

  • Sidell BD (1977) Turnover of cytochrome c in skeletal muscle of green sunfish (Lepomis cyanellus R.) during thermal acclimation. J Exp Zool 199:233–250

    PubMed  CAS  Google Scholar 

  • Sidell BD (1980) Responses of goldfish (Carassius auratus L.) muscle to acclimation temperature: alterations in biochemistry and proportions of different fiber types. Physiol Zool 53:98–107

    CAS  Google Scholar 

  • Sidell BD (1983) Cellular acclimatization to environmental change by quantitative alterations in enzymes and organelles. In: Cossins AR, Sheterline P (eds) Cellular acclimatisation to environmental change. Cambridge Univ Press, London, pp 103–120

    Google Scholar 

  • Sidell BD (1988) Diffusion and ultrastructural adaptations of ectotherms. In: Jones DP (ed) Microcompartmentation. CRC, Boca Raton pp 71–92

    Google Scholar 

  • Sidell BD, Crockett EL (1987) Characterization of energy metabolism in Antarctic fishes. Ant J US 22:213–214

    Google Scholar 

  • Sidell BD, Hazel JR (1987) Temperature affects the diffusion of small molecules through cytosol of fish muscle. J Exp Biol 129:191–203

    PubMed  CAS  Google Scholar 

  • Sidell BD, Johnston IA (1985) Thermal sensitivity of contractile function in chain pickerel, Esox niger. Can J Zool 63:811–816

    CAS  Google Scholar 

  • Sidell BD, Moerland TS, Johnston IA, Goldspink G (1983) The eurythermal myofibrillar protein complex of the mummichog (Fundulus heteroclitus): adptation to a fluctuating thermal environment. J Comp Physiol 153:167–173

    CAS  Google Scholar 

  • Sidell BD, Driedzic WR, Stowe BD, Johnston IA (1987) Biochemical correlations of power development and metabolic fuel preferenda in fish hearts. Physiol Zool 60:221–232

    Google Scholar 

  • Sisson JE III, Sidell BD (1987) Effect of thermal acclimation on muscle fiber recruitment of swimming striped bass (Morone saxatilis). Physiol Zool 60:310–320

    Google Scholar 

  • Smit H, Amelink-Koutstaal JM, Vijverberg J, von Vaupel-Klein JC (1971) Oxygen comsump-tion and efficiency of swimming goldfish. Comp Biochem Physiol 39A:1–28

    Google Scholar 

  • Smit H, van den Berg RJ, Kijne-den Hartog I (1974) Some experiments on thermal acclimation in goldfish (Carassius auratus). Neth J Zool 24:32–49

    Google Scholar 

  • Somero GN (1975) The roles of isozymes in adaptation to varying temperatures. In: Market CL (ed) Isozymes II. Physiological function. Academic Press, New York London, pp 221–234

    Google Scholar 

  • Somero GN (1978) Temperature adaptation of enzymes: biological optimization through structure-function compromises. Annu Rev Ecol Syst 9:1–29

    CAS  Google Scholar 

  • Stanfield PR (1972) Electrical properties of white and red muscle fibres of the elasmobranch fish Scyliorhinus canicula. J Physiol (London) 222:161–186

    CAS  Google Scholar 

  • Stevens ED (1979) The effect of temperature on tail beat frequency of fish swimming at constant velocity. Can J Zool 57:1628–1635

    Google Scholar 

  • Torres JJ, Somero GN (1988) Metabolism, enzyme activities and cold adaptation in Antarctic mesopelagic fishes. Mar Biol 98:169–180

    CAS  Google Scholar 

  • Tyler S, Sidell BD (1984) Changes in mitochondrial distribution and diffusion distances in muscle of goldfish upon acclimation to warm and cold temperatures. J Exp Zool 232:1–9

    Google Scholar 

  • Vogel S (1981) Life in moving fluids. Univ Press, Princeton, 352 pp

    Google Scholar 

  • Wardle CS (1975) Limit of fish swimming speed. Nature (London) 255:725–727

    CAS  Google Scholar 

  • Wardle CS (1979) Effects of temperature on the maximum swimming speed of fishes. In: Ali MA (ed) Environmental physiology of fishes. Plenum, New York, pp 519–531

    Google Scholar 

  • Wardle CS, Videler JJ (1980) Fish swimming. In: Elder HY, Trueman ER (eds) Aspects of animal movement. Cambridge Univ Press, London, pp 125–150

    Google Scholar 

  • Webb PW (1971) The swimming energetics of trout. I. Thrust and power output at cruising speeds. J Exp Biol 55:521–540

    PubMed  CAS  Google Scholar 

  • Webb PW (1975) Hydrodynamics and energetics of fish propulsion. Bull Fish Res Board Can 190:159 pp

    Google Scholar 

  • Webb PW (1978) Hydrodynamics: non-scombrid fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 7: Locomotion. Academic Press, New York London, pp 190–237

    Google Scholar 

  • Webb PW (1984) Form and function in fish swimming. Sci Am 251:72–82

    Google Scholar 

  • Wilson FR (1973) Enzyme changes in goldfish (Carassius auratus L.) in response to temperature acclimation. I. An immunochemical approach. II. Isozymes. PhD Thesis, Univ Illinois, Urbana

    Google Scholar 

  • Wu T (1977) Introduction to the scaling of aquatic animal locomotion. In: Pedley TJ (ed) Scale effects in animal locomotion. Academic Press, New York London, pp 203–232

    Google Scholar 

  • Yamawaki H, Tsukuda H (1986) Enhanced contractile activity of goldfish skeletal muscle related to cold acclimation. Comp Biochem Physiol 83A:549–553

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sidell, B.D., Moerland, T.S. (1989). Effects of Temperature on Muscular Function and Locomotory Performance in Teleost Fish. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74510-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74510-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74512-6

  • Online ISBN: 978-3-642-74510-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics