Frequency Standards Utilizing Penning Traps

  • J. J. Bollinger
  • S. L. Gilbert
  • W. M. Itano
  • D. J. Wineland


Ion traps have a number of characteristics that make them attractive candidates for frequency standards [1]. Ion confinement times from a few hours to a few days permit long interrogation times and therefore narrow linewidths and large line Q’s. In addition, ion traps typically do not suffer from the usual Perturbations associated with confinement. For example, collisions of hydrogen atoms with the confining walls of a hydrogen maser can produce fractional frequency shifts greater than 1 × 10−11 on the masing transition [2]. Stark shifts due to the confining electrostatic field of a Penning trap can, in many cases, be made less than 1 × 10−15 [3,4].


Frequency Standard Cooling Laser Stark Shift Clock Transition Sympathetic Cool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for example D.J. Wineland, W.M. Itano, and R.S. Van Dyck, Jr.: Adv. At. Mol. Phys. 19, 135 (1983) and references thereinCrossRefGoogle Scholar
  2. 2.
    F.L. Walls: Proc. of the IEEE 74, 142 (1986)CrossRefADSGoogle Scholar
  3. 3.
    D.J. Wineland, W.M. Itano, J.C. Bergquist, and F.L. Walls: in Proc. of 35th Ann. Freq. Control Symposium (USAERADCOM, Ft. Monmouth, NJ 07703) p. 602 (1981)Google Scholar
  4. D.J. Wineland, in Precision Measurement and Fundamental Constants II, ed. by B.N. Taylor and W.D. Phillips (Natl. Bur. Stands. (U.S) Spec. Publ. 617, 1984), p. 83Google Scholar
  5. 4.
    J.J. Bollinger, J.D. Prestage, W.M Itano, and D.J. Wineland: Phys. Rev. Lett. 54, 1000 (1985)CrossRefADSGoogle Scholar
  6. 5.
    S. Stenholm: Rev. Mod. Phys. 58, 699 (1986)CrossRefADSGoogle Scholar
  7. 6.
    D.J. Wineland and W.M Itano: Physics Today 40, 34 (June 1987)CrossRefGoogle Scholar
  8. 7.
    R.H. Dicke: Phys. Rev. 89, 472 (1953)CrossRefADSGoogle Scholar
  9. 8.
    D.J. Wineland et al.: these proceedingsGoogle Scholar
  10. 9.
    D.A. Church and H.G. Dehmelt: J. Appl. Phys. 40, 3421 (1969)CrossRefADSGoogle Scholar
  11. 10.
    D.J. Wineland, J.C. Bergquist, R.E. Drullinger, H. Hemmati, W.M. Itano, and F.L. Walls: J. Phys. (Paris) Colloq. 42, C8–307 (1981)CrossRefGoogle Scholar
  12. 11.
    W.M. Itano and D.J. Wineland: Phys. Rev. A24, 1364 (1981)CrossRefADSGoogle Scholar
  13. 12.
    D.J. Larson, J.C. Bergquist, J.J. Bollinger, W.M. Itano, and D.J. Wineland: Phys. Rev. Lett. 57 70 (1986)CrossRefADSGoogle Scholar
  14. 13.
    F. Plumelle, M. Desaintfuscien, M. Jardino, and P. Petit: Appl. Phys. B41, 183 (1986)CrossRefGoogle Scholar
  15. 14.
    R.C. Thompson, G.P. Barwood, and P. Gill: Appl. Phys. B46, 87 (1988)Google Scholar
  16. 15.
    L.R. Brewer, J.D. Prestage, J.J. Bollinger, W.M. Itano, D.J. Larson, and D.J. Wineland: Phys. Rev. A38, 859 (1988)ADSGoogle Scholar
  17. 16.
    C.F. Driscoll, K.S. Fine, and J.H. Malmberg: Phys. Fluids 29, 2015 (1986)CrossRefADSGoogle Scholar
  18. 17.
    S.L. Gilbert, J.J. Bollinger, and D.J. Wineland: Phys. Rev. Lett. 60, 2022 (1988)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • J. J. Bollinger
    • 1
  • S. L. Gilbert
    • 1
  • W. M. Itano
    • 1
  • D. J. Wineland
    • 1
  1. 1.Time and Frequency Div.National Institute of Standards and TechnologyBoulderUSA

Personalised recommendations