Advertisement

Frequency Stabilization of Highly Coherent AlGaAs Diode Lasers

  • A. M. Akulshin
  • V. V. Nikitin
  • V. A. Sautenkov
  • V. V. Vasiliev
  • V. L. Velichansky
  • E. K. Yurkin
  • A. S. Zibrov

Abstract

A solitary diode laser (DL) as compared with a typical gas laser has a large spectral linewidth which limits the attainable frequency stability /1/. One of the most efficient ways to narrow spectral line of a DL is an external optical feedback /2,3/, which makes it possible to decrease the linewidth to 1 kHz /4,5/. An external cavaty diode laser (ECDL) has many advantages but is more complicated than a solitary DL; the first work on DL frequency stabilization /6/ was followed by experiments on ECDL stabilization 12 years later /7/. Here we report on two experiments in which: a fast technique of side-band spectroscopy has been used for an ECDL frequency stabilization to reflection resonance of a confocal interferometer /8/; two ECDLs have been locked to adjacent sub-Dopplerresonances in saturated absorption of 133Cs by using conventional lock in servo systems, and DL frequency stability was estimated on the direct measurement of beat frequency fluctuations /9/.

Keywords

Allan Variance External Cavity Diode Laser Microscope Objective Lens Reflection Resonance Saturated Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Tsuchida and T. Tako: Jap. J. of Appl. Phys., 22, 1970 (1983)Google Scholar
  2. 2.
    V.L. Velichansky, A.S. Zibrov et al: Zh. Tekh. Letts., 4 1087 (1978)Google Scholar
  3. 3.
    V.Yu. Bazhenov, A.P. Bogatov et al.: Sov. J. Quant. Electr. 10, 1547 (1980)Google Scholar
  4. 4.
    A.M. Akulshin, N.G. Basov et al: Sov. J. Quant. Electr. 13, 1003 (1983)Google Scholar
  5. 5.
    R. Wyatt: Electr. Lett. 21, 658 (1985)CrossRefGoogle Scholar
  6. 6.
    Yu. A. Bykovsky, V.L. Velichansky et al: Sov. Phys.-JETP 30, 605 (1970)ADSGoogle Scholar
  7. 7.
    A.S. Zibrov, A.M. Akulshin et al: Sov. J.Quant. Electr. 12, 502 (1982)CrossRefADSGoogle Scholar
  8. 8.
    E.K. Yurkin, A.S. Zibrov et al: P.N.Lebedev Physical Institute, Preprint Iv’ 34, Moscow (1988)Google Scholar
  9. 9.
    A.M. Akulshin, V.L. Velichansky et al: to be published in Sov. J., Quant. Electr., 15, N°10 (1988)Google Scholar
  10. 10.
    R.W. Dreyer, T.L. Hall et al: Appl. Phys. B 31, 97 (1983)CrossRefADSGoogle Scholar
  11. 11.
    M. Gehrtz, G.C. Bjorklund et al: Appl. Phys. B 32, 145 (1983)CrossRefADSGoogle Scholar
  12. 12.
    W. Lenth: Opt. Lett., 8, 575 (1983)CrossRefADSGoogle Scholar
  13. 13.
    A.P. Bogatov, P.G. Eliseev et al: Sov. J. Quant. Electr. 13, 1221 (1983)Google Scholar
  14. 14.
    A.M. Akulshin, V. Yu., Bazhenov et al: Sov. J. Quant. Electr. 16, 912 (1986)Google Scholar
  15. 15.
    S. Ohshima, Y. Nakadan, and Y. Koga: IEEE J. of Quant. Electr. 23, 473 (1987)CrossRefADSGoogle Scholar
  16. G.P. Barwood, P. Gill, and W.R.C. Rowley: El. Letts. 24, 769 (1988)CrossRefGoogle Scholar
  17. 16.
    A.M.Akulshin, V,L.Velichansky et al: P.N.Lebedev Physical Institute, Preprint 99, Moscow (1985)Google Scholar
  18. A.N. Akulshin, V.L.Ve-lichansky et al: “Proc. of the Seminar on the Optical Orientation of Atoms and Molecules” p. 152, LeningradGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • A. M. Akulshin
    • 1
  • V. V. Nikitin
    • 1
  • V. A. Sautenkov
    • 1
  • V. V. Vasiliev
    • 1
  • V. L. Velichansky
    • 1
  • E. K. Yurkin
    • 1
  • A. S. Zibrov
    • 1
  1. 1.P.N. Lebedev Physical InstituteUSSR Academy of ScienceMoscowUSSR

Personalised recommendations