Skip to main content

Part of the book series: Advanced Series in Agricultural Sciences ((AGRICULTURAL,volume 18))

Abstract

Inferences in a univariate normal linear model with two components of variance are discussed from a Bayesian perspective. When variances are known, three scenarios are considered: unknown “nuisance” parameters (β) and breeding values (u), unknown β and known u, and unknown u and known β. With unknown variances, several situations with corresponding predictors of breeding value are considered; the predictors differ in the degree of marginalization with respect to nuisance parameters and variance components, and in all these cases, inverted chi-square distributions are used as priors for the variance components. Prediction is discussed using the concept of a loss function, and it is argued that uniformly best predictors cannot be obtained in a classical framework, unless attention is restricted to the class of unbiased statistics. However, there is an unequivocal Bayesian solution. Model choice and prediction of future observations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beck JV, Arnold KJ (1977) Parameter estimation in engineering and science. J Wiley, New York

    Google Scholar 

  • Berger JO (1980) Statistical decision theory: foundations, concepts and methods. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Adison-Wesley, Reading

    Google Scholar 

  • Broemeling LD (1985) Bayesian analysis of linear models. M Dekker, New York

    Google Scholar 

  • Bulmer MG (1980) The mathematical theory of quantitative genetics. Clarendon Press, Oxford

    Google Scholar 

  • Bulmer MG (1982) Sire evaluation with best linear unbiased predictors. Biometrics 38:1086– 1088

    Google Scholar 

  • Casella G (1985) An introduction to empirical Bayes data analysis. Am Statistician 39:83–87

    Article  Google Scholar 

  • Chen CF (1979) Bayesian inference for a normal dispersion matrix and its application to stochastic multiple regression analysis. J R Stat Soc Ser B 41:235–248

    Google Scholar 

  • Dempfle L (1977) Relation entre BLUP (best linear unbiased prediction) et estimateurs bayesiens. Ann Genet Sel Anim 9:27–32

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    Google Scholar 

  • Efiron B, Morris C (1973) Stein’s estimation rule and its competitors: an empirical Bayes approach. J Am Stat Assoc 68:17–130

    Google Scholar 

  • Fernando RL, Gianola D (1986) Optimal properties of the conditional mean as a selection criterion. Theor Appl Genet 72:822–825

    Google Scholar 

  • Foulley JL, Im S, Gianda D, Hoschele I (1987) Empirical Bayes estimation of parameters for n polygenic binary traits. Genet Sel Evol 19:197–224

    Article  Google Scholar 

  • Gianola D (1982) Theory and analysis of threshold characters. J Anim Sci 54:1079–1096

    Google Scholar 

  • Gianola D, Fernando RL (1986) Bayesian methods in animal breeding theory. J Anim Sci 63:217–244

    Google Scholar 

  • Gianola D, Foulley JL, Fernando RL (1986) Prediction of breeding values when variances are not known. In: Dickerson GE, Johnson RK (eds) Proc 3rd World Congr Genet Appl Livest Prod. Agric Cornmun, Univ Nebraska, Lincoln, Nebraska XII:356–370

    Google Scholar 

  • Goffinet B (1983) Selection on selected records. Genet Sel Evol 15:91–97

    Article  Google Scholar 

  • Harvey WR (1982) Least-squares analysis of discrete data. J Anim Sci 54:1067–1071

    Google Scholar 

  • Harville DA (1974) Bayesian inference for variance components using only error contrasts. Biometrika 61:383–385

    Article  Google Scholar 

  • Harville DA (1977) Maximum likelihood approaches to variance component estimation and related problems. J Am Stat Assoc 72:320–338

    Article  Google Scholar 

  • Harville DA (1984) Discussion on interpolation and estimation. In: David HA, David HT (eds) Statistics: an appraisal. Iowa State Univ Press, Ames, pp 281–286

    Google Scholar 

  • Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 28:476–490

    PubMed  CAS  Google Scholar 

  • Henderson CR (1963) Selection index and expected genetic advance. In: Hanson WD, Robinson HR (eds) Statistical genetics and plant breeding. National Academy of Sciences, Washington DC, Publication 982:141–153

    Google Scholar 

  • Henderson CR (1973) Sire evaluation and genetic trends. In: Proc Anim Breed Genet Symp in Honor of Dr. J.L. Lush. ASAS and ADSA, Champaign, Illinois, pp 10–41

    Google Scholar 

  • Henderson CR (1974) General flexibility of linear model techniques for sire evaluation. J Dairy Sci 57:963–972

    Article  Google Scholar 

  • Henderson CR (1976) A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32:69–83

    Article  Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. Univ Guelph, Guelph

    Google Scholar 

  • Hoschele I, Gianola D, Foulley JL (1987) Estimation of variance components with quasi-continuous data using Bayesian methods. Z Tierz Züchtungsbiol 104:334–349

    Google Scholar 

  • Jeffreys H (1961) Theory of probability. Oxford, Clarendon Press

    Google Scholar 

  • Judge GC, Griffiths WE, Hill RC, Lutkepol H, Lee TC (1985) The theory and practice of econometrics. Wiley, New York

    Google Scholar 

  • Lindley DV, Smith AFM (1972) Bayes estimates for the linear model. J R Stat Soc B 34:1–18

    Google Scholar 

  • Malecot G (1947) Les criteres statistiques et la subjectivite de la connaisance scientifique. Ann Univ Lyon X:42–74

    Google Scholar 

  • Misztal I (1986) Survey of some computing methods in BLUP sire evaluation. In: Mixed models-applications and analysis, pp 8–9, Institut für Mathematik, Univ Augsburg, Augsburg

    Google Scholar 

  • Misztal I, Gianda D (1987) Indirect solution of mixed model equations. J Dairy Sci 70:716– 723

    Article  Google Scholar 

  • Peixoto JL, Harville DA (1986) Comparisons of alternative predictors under the balanced one-way random model. J Am Stat Assoc 81:431–436

    Article  Google Scholar 

  • Robinson G (1982) That BLUP is a good thing. CSIRO, Division of Mathematics and Statistics, Clayton, Victoria, mimeo 13, pp

    Google Scholar 

  • Schaeffer LR, Kennedy BW (1986) Computing solutions to mixed model equations. In: Dickerson GE, Johnson RK (eds) Proc 3rd World Congr Genet Appl Livest Prod. Agric Commun, Univ Nebraska, Lincoln, Nebraska, XII:382–393

    Google Scholar 

  • Smith HF (1936) A discriminant function for plant selection. Ann Eugen 7:240–250

    Article  Google Scholar 

  • Smith SP, Allaire FR (1985) Efficient selection rules to increase non-linear merit: application in mate selection. Genet Sel Evol 17:387–406

    Article  CAS  Google Scholar 

  • Smith SP, Allaire FR (1986) Analysis of failure times measured in dairy cows: theoretical considerations in animal breeding. J Dairy Sci 69:217–227

    Article  Google Scholar 

  • Smith SP, Hammond K (1986) The ramifications of portfolio and utility theories for dairy breeding programs. In: Dickerson GE, Johnson RK (eds) Proc 3rd World Congr Genet Appl Livest Prod. Agric Commun, Univ Nebraska, Lincoln, Nebraska IX:101–105

    Google Scholar 

  • Thompson R (1979) Sire evaluation. Biometrics 35:339–353

    Article  Google Scholar 

  • Thompson R (1980) Maximum likelihood estimation of variance components. Math Operationsforsch Stat 11:545–561

    Google Scholar 

  • Zellner A (1971) An introduction to Bayesian inference in econometrics. J Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gianola, D., Im, S., Macedo, F.W. (1990). A Framework for Prediction of Breeding Value. In: Gianola, D., Hammond, K. (eds) Advances in Statistical Methods for Genetic Improvement of Livestock. Advanced Series in Agricultural Sciences, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74487-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74487-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74489-1

  • Online ISBN: 978-3-642-74487-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics