Skip to main content

Application of Parallel-Detection Electron Energy Loss Spectroscopy in Biology

  • Conference paper

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 4))

Abstract

For many years it has been appreciated that electron energy loss spectroscopy (EELS) is the most sensitive microanalytical technique for detecting the biologically ubiquitous light elements, carbon, nitrogen and oxygen (Isaacson and Johnson, 1975). In particular, elemental ratios such as nitrogen-to-sulfur or nitrogen-to-phosphorus can provide information about relative concentrations of proteins (containing sulfur-rich amino-acids) and nucleotides (containing phosphate groups) in subcellular organelles (Leapman and Ornberg, 1988). With conventional EELS instrumentation it has been relatively easy for example to measure nitrogen present typically at levels of 5 to 10 atomic percent but phosphorus and sulfur occurring at levels below about 1 to 3 atomic percent are often only weakly visible in the core loss spectrum. Other interesting elements like calcium and iron have not generally been detectable at physiological concentrations using EELS until the recent advent of highly efficient parallel detection systems. Now it is becoming apparent that EELS may in fact compete with and even surpass the performance of energy-dispersive x-ray spectroscopy (EDXS) for such elements (Shuman and Somlyo, 1987). The aim of this paper is to compare directly the sensitivity of EELS and EDXS, to illustrate new methods of spectral processing, and to consider the state-of-the-art and future prospects for biological applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Colliex C, Jeanguillaume C, Mory C (1984) Unconventional modes for STEM imaging of biological structures. J Ultrastruct Res 88:177–206.

    Article  PubMed  CAS  Google Scholar 

  • Costa JL, Joy DC, Maher DM, Kirk KL, Hui SW (1978) Fluorinated molecule as a tracer: difluoroserotonin in human platelets mapped by EELS. Science 200:537–539.

    Article  PubMed  CAS  Google Scholar 

  • Egerton RF (1984) Parallel recording systems for electron energy loss spectroscopy (EELS). J Electron Micros Tech 1:37–52.

    Article  CAS  Google Scholar 

  • Foster MC, Leapman RD, Li MX, Ornberg RL, Atwater I (1989) (in press) Composition of secretory granules by EPMA of cryosectioned rat pancreatic islets. Biophys J (abstract).

    Google Scholar 

  • Heinrich KFJ (1981) Electron beam x-ray microanalysis, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Hunt J (1988) (to be published) PEELS imaging using an IBM PC AT.

    Google Scholar 

  • Isaacson M, Johnson D (1975) The microanalysis of light elements using transmitted energy loss electrons. Ultramicroscopy 1:33–52.

    Article  PubMed  CAS  Google Scholar 

  • Jeanguillaume C, Tence M, Trebbia P, Colliex C (1983) EELS chemical mapping of low-Z elements in biological sections. In: Johari O (ed) Scanning Electron Microscopy. SEM, AMF O’Hare, IL, Vol. 2, p.745–756.

    Google Scholar 

  • Johnson DE, Monson KL, Csillag S, Stern EA (1981) An approach to parallel-detection EELS. In: Geiss RH (ed) Analytical Electron Microscopy. San Francisco Press, San Francisco, CA, p.205–209.

    Google Scholar 

  • Krivanek OL, Ahn CC, Keeney RB (1987) Parallel detection electron spectrometer using quadrupole lenses. Ultramicroscopy 22:103–116.

    Article  CAS  Google Scholar 

  • Krivanek OL (1988) (private communication).

    Google Scholar 

  • Leapman RD, Fiori CE, Gorlen KE, Gibson CC, Swyt CR (1984) Combined elemental and structural imaging in a computer-controlled AEM. Ultramicroscopy 12:281–292.

    Article  Google Scholar 

  • Leapman RD, Ornberg RL (1988) Quantitative electron energy loss spectroscopy in biology. Ultramicroscopy 24:251–268.

    Article  PubMed  CAS  Google Scholar 

  • Leapman RD, Swyt CR (1988) Separation of overlapping core edges in electron energy loss spectra by multiple least squares fitting. Ultramicroscopy (in press).

    Google Scholar 

  • Leapman RD, Fiori CE, Swyt CR (1984) Mass thickness determination by electron energy loss for quantitative x-ray microanalysis in biology. J Microsc 133:239–253.

    Article  PubMed  CAS  Google Scholar 

  • Ottensmeyer FP (1984) Electron spectroscopic imaging: parallel energy filtering and microanalysis in the fixed-beam electron microscope. J Ultrastruct Res 88:121–134.

    Article  PubMed  CAS  Google Scholar 

  • Powell CJ (1985) Inner shell cross sections In: Mark TD, Dunn GH (eds) Electron Impact lonization. Springer-Verlag, NY, p.199–231.

    Google Scholar 

  • Shuman H, Kruit P (1985) Quantitative data processing of parallel recorded electron energy loss spectra with low signal to background. Rev Sci Instrum 56:231–239.

    Article  CAS  Google Scholar 

  • Shuman H (1981) Parallel recording of electron energy loss spectra. Ultramicroscopy 6:163–168.

    PubMed  CAS  Google Scholar 

  • Shuman H, Somlyo AP (1987) Electron energy loss analysis of neartrace element concentrations of calcium. Ultramicroscopy 21:23–32.

    Article  PubMed  CAS  Google Scholar 

  • Shuman H, Chang CF, Buhle EL, Somlyo AP (1986) EELS: quantitation and imaging. Ann NY Acad Sci 483:295–310.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leapman, R. (1989). Application of Parallel-Detection Electron Energy Loss Spectroscopy in Biology. In: Zierold, K., Hagler, H.K. (eds) Electron Probe Microanalysis. Springer Series in Biophysics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74477-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74477-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74479-2

  • Online ISBN: 978-3-642-74477-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics